
NLGov REST API Design Rules 2.0.1
Logius Standard
Definitive version January 07, 2025

This version:
https://gitdocumentatie.logius.nl/publicatie/api/adr/2.0.1/

Latest published version:
https://gitdocumentatie.logius.nl/publicatie/api/adr/

Latest editor's draft:
https://logius-standaarden.github.io/API-Design-Rules/

Previous version:
https://gitdocumentatie.logius.nl/publicatie/api/adr/2.0.0/

Editors:
Frank Terpstra (Geonovum)
Jan van Gelder (Geonovum)
Alexander Green (Logius)
Martin van der Plas (Logius)

Authors:
Jasper Roes (Het Kadaster)
Joost Farla (Het Kadaster)

Participate:
GitHub Logius-standaarden/API-Design-Rules
File an issue
Commit history
Pull requests

This document is also available in these non-normative format: pdf

This document is licensed under
Creative Commons Attribution 4.0 International Public License

Abstract

This document contains a normative standard for designing APIs in the Dutch Public Sector.
The Governance of this standard is described in a separate repository and published by Logius.
This document is part of the Nederlandse API Strategie, which consists of a set of documents.

Lo
gi

us
 S

ta
nd

ar
d 

- D
ef

in
iti

ve
 v

er
si

on

https://www.logius.nl/standaarden
https://gitdocumentatie.logius.nl/publicatie/api/adr/2.0.1/
https://gitdocumentatie.logius.nl/publicatie/api/adr/
https://logius-standaarden.github.io/API-Design-Rules/
https://gitdocumentatie.logius.nl/publicatie/api/adr/2.0.0/
https://www.geonovum.nl/
https://www.geonovum.nl/
https://www.logius.nl/
https://www.logius.nl/
https://www.kadaster.nl/
https://www.kadaster.nl/
https://github.com/Logius-standaarden/API-Design-Rules/
https://github.com/Logius-standaarden/API-Design-Rules/issues/
https://github.com/Logius-standaarden/API-Design-Rules/commits/
https://github.com/Logius-standaarden/API-Design-Rules/pulls/
http://localhost:8080/API-Design-Rules.pdf
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://publicatie.centrumvoorstandaarden.nl/api/adr-beheer/
https://github.com/Logius-standaarden/ADR-Beheermodel
https://www.geonovum.nl/themas/kennisplatform-apis#APIStrategie


1.
1.1
1.2
1.3
1.4
1.5

2.
2.1
2.1.1

2.1.2

3.
3.1
3.2
3.3
3.4
3.5
3.6

As well as sections marked as non-normative, all authoring guidelines, diagrams, examples, and
notes in this specification are non-normative. Everything else in this specification is normative.

The key words MAY, MUST, MUST NOT, and SHOULD in this document are to be interpreted as
described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as
shown here.

Status of This Document

This is the definitive version of this document. Edits resulting from consultations have been
applied.

Table of Contents

Abstract

Status of This Document

Introduction
Goal
Status
Authors
Reading Guide
Extensions

Summary
Normative Design Rules

List of functional rules

List of technical rules

The core set of Design Rules
Resources
HTTP methods
Statelessness
Relationships
Operations
Documentation

Conformance§

https://datatracker.ietf.org/doc/html/bcp14


3.7
3.8
3.9

4.

A.
A.1
A.2

Versioning
Transport Security
Geospatial

Glossary

References
Normative references
Informative references

Organization /
Committee

Version
number

Official status Date

Forum Standaardisatie 1.0 reported
15-10-
2019

Forum Standaardisatie 1.0
'comply of explain' standard
(mandatory open standard)

09-07-
2020

Working group 2.0.0-rc.1
working version / final draft by
'Working Group'

05-09-
2023

KP API Steering
committee

2.0.0-rc.1
approved consultation version / adopted
by 'KP API'

21-09-
2024

MIDO
programmeringstafel

2.0.0-rc.2 release candidate 2 / definitief concept
14-02-
2024

MIDO PGDI Committee 2.0.0-rc.2 definitive version / approved by 'PGDI'
07-03-
2024

Forum Standaardisatie 2.0.0-rc.2 reported
25-01-
2024

Forum Standaardisatie 2.0.0 intake pending
18-04-
2024

Forum Standaardisatie 2.0.0
definitive version / approved by Forum
Standaardisatie

tbd

This section is non-normative.

1. Introduction§

https://www.forumstandaardisatie.nl/open-standaarden/rest-api-design-rules
https://gitdocumentatie.logius.nl/publicatie/api/adr/1.0
https://www.forumstandaardisatie.nl/open-standaarden/rest-api-design-rules
https://gitdocumentatie.logius.nl/publicatie/api/adr/1.0
https://gitdocumentatie.logius.nl/publicatie/api/adr/
https://gitdocumentatie.logius.nl/publicatie/api/adr/
https://github.com/Geonovum/KP-APIs/tree/03d7fd61b3f25eef5d3242c7beee688e0d2d9623/overleggen/Werkgroep%20API%20design%20rules/Verslagen/20230905
https://gitdocumentatie.logius.nl/publicatie/api/adr/2.0.0-rc.1/
https://github.com/Geonovum/KP-APIs/tree/master/overleggen/Stuurgroep/Verslagen
https://github.com/Geonovum/KP-APIs/tree/master/overleggen/Stuurgroep/Verslagen
https://gitdocumentatie.logius.nl/publicatie/api/adr/2.0.0-rc.1/
https://pgdi.nl/groups/view/c9a77467-7118-42c4-ad27-d0da773bc7dc/programmeringstafels-en-financiele-commissie-pgdi/files/82ac7589-ce2a-4c39-aabd-99eb9a6cf43a
https://pgdi.nl/groups/view/c9a77467-7118-42c4-ad27-d0da773bc7dc/programmeringstafels-en-financiele-commissie-pgdi/files/82ac7589-ce2a-4c39-aabd-99eb9a6cf43a
https://gitdocumentatie.logius.nl/publicatie/api/adr/2.0.0-rc.2
https://pgdi.nl/groups/view/fa975d80-05e2-4f9e-89d6-6a053295c97b/programmeringsraad-gdi/files
https://gitdocumentatie.logius.nl/publicatie/api/adr/2.0.0-rc.2
https://www.forumstandaardisatie.nl/open-standaarden/rest-api-design-rules
https://gitdocumentatie.logius.nl/publicatie/api/adr/2.0.0-rc.2
https://www.forumstandaardisatie.nl/open-standaarden/rest-api-design-rules
https://gitdocumentatie.logius.nl/publicatie/api/adr/2.0.0
https://www.forumstandaardisatie.nl/open-standaarden/rest-api-design-rules
https://gitdocumentatie.logius.nl/publicatie/api/adr/2.0.0


More and more governmental organizations offer REST APIs (henceforth abbreviated as APIs), in
addition to existing interfaces like SOAP and WFS. These APIs aim to be developer-friendly and
easy to implement. While this is a commendable aim, it does not shield a developer from a steep
learning curve getting to know every new API, in particular when every individual API is designed
using different patterns and conventions.

This document aims to describe a widely applicable set of design rules for the unambiguous
provisioning of REST APIs. The primary goal is to offer guidance for organizations designing new
APIs, with the purpose of increasing developer experience (DX) and interoperability between
APIs. Hopefully, many organizations will adopt these design rules in their corporate API strategies
and provide feedback about exceptions and additions to subsequently improve these design rules.

This version of the design rules has been submitted to Forum Standaardisatie for inclusion on the
Comply or Explain list of mandatory standards in the Dutch Public Sector. This document
originates from the document API Strategie voor de Nederlandse Overheid, which was recently
split into separate sub-documents.

Despite the fact that two authors are mentioned in the list of authors, this document is the result of
a collaborative effort by the members of the API Design Rules Working Group.

This document is part of the Nederlandse API Strategie.

The Nederlandse API Strategie consists of a set of distinct documents.

1.1 Goal§

1.2 Status§

1.3 Authors§

1.4 Reading Guide§

https://docs.geostandaarden.nl/api/vv-hr-API-Strategie-20190715/
https://www.geonovum.nl/themas/kennisplatform-apis#APIStrategie


Status Description & Link

Informative Inleiding NL API Strategie

Informative Architectuur NL API Strategie

Informative Gebruikerswensen NL API Strategie

Normative API Design Rules (ADR)

Normative Open API Specification (OAS)

Normative NL GOV OAuth profiel

Normative Digikoppeling REST API koppelvlak specificatie

Normative module GEO module

Normative module Transport Security module

Before reading this document it is advised to gain knowledge of the informative documents, in
particular the Architecture.

An overview of all current documents is available in this Dutch infographic:

https://geonovum.github.io/KP-APIs/API-strategie-algemeen/Inleiding/
https://geonovum.github.io/KP-APIs/API-strategie-algemeen/Architectuur/
https://geonovum.github.io/KP-APIs/API-strategie-algemeen/Gebruikerswensen/
https://publicatie.centrumvoorstandaarden.nl/api/adr/
https://forumstandaardisatie.nl/open-standaarden/openapi-specification
https://publicatie.centrumvoorstandaarden.nl/api/oauth/
https://publicatie.centrumvoorstandaarden.nl/dk/restapi/
https://docs.geostandaarden.nl/api/API-Strategie-mod-geo/
https://geonovum.github.io/KP-APIs/API-strategie-modules/transport-security/
https://geonovum.github.io/KP-APIs/API-strategie-algemeen/Architectuur/


Legenda

Verplichte
'Pas toe of leg uit'
-lijst standaarden

A
lg

em
en

e 
do

cu
m

en
te

n Inleiding
NL API Strategie

Gebruikerswensen
NL API Strategie

Architectuur
NL API Strategie

N
or

m
at

ie
ve

 d
oc

um
en

te
n

API Design Rules (ADR)

Open API Specification (OAS)

NL GOV OAuth profiel Digikoppeling REST API koppelvlak
specificatie

NL GOV OIDC profiel

Geospatial module

Transport Security module

NL API Strategie
M

od
ul

en
 d

oc
um

en
te

n

API Management module

Versioning module

API Access module

Signing & Encription module

Naming conventions module

JSON module

Filtering & Sorting module

Search & Customization module

Temporal module

Hypermedia module

Pagination module

Caching module

Rate limiting module

Error handling module

Delegation module

API Monitoring module

Discovery moduleLogging module

Batching module

Vastgestelde algemene
documenten

Concept modules

Stabiele modules

Laatst bijgewerkt:

dd. 29-11-2024
Versie 1.0.2

Infographic
NL API Strategie

Nog te ontwikkelen
modules

Normatieve
kennisplatform

standaarden

Figure 1 NL API Strategie Infographic

NOTE
In addition to this (normative) document, separate modules are being written to provide a set of
extensions. These modules are all separate documents and exists in a latest editor's draft
(Werkversie in Dutch). The latest editor's draft is actively being worked on and can be found on
GitHub. It contains the most recent changes.

1.5 Extensions§

https://docs.geostandaarden.nl/api/API-Strategie/
https://docs.geostandaarden.nl/api/API-Strategie-gebruikerswensen/
https://docs.geostandaarden.nl/api/API-Strategie-architectuur/
https://gitdocumentatie.logius.nl/publicatie/api/adr/
https://forumstandaardisatie.nl/open-standaarden/openapi-specification
https://gitdocumentatie.logius.nl/publicatie/api/oauth/
https://gitdocumentatie.logius.nl/publicatie/dk/restapi/
https://gitdocumentatie.logius.nl/publicatie/api/oidc/
https://gitdocumentatie.logius.nl/publicatie/api/mod-geo/
https://gitdocumentatie.logius.nl/publicatie/api/mod-ts/
https://docs.geostandaarden.nl/api/API-Strategie/
https://docs.geostandaarden.nl/api/API-Strategie-mod-access-control/
https://docs.geostandaarden.nl/api/API-Strategie-mod-naming-conventions/
https://docs.geostandaarden.nl/api/API-Strategie-mod-hypermedia/
https://geonovum.github.io/KP-APIs/API-strategie-modules/batching/
https://geonovum.github.io/KP-APIs/
https://github.com/Geonovum/KP-APIs


Design rules can be technical rules, which should be tested automatically and functional rules
which should be considerd when designing and building the api.

/core/naming-resources: Use nouns to name resources

/core/naming-collections: Use plural nouns to name collection resources

/core/interface-language: Define interfaces in Dutch unless there is an official English
glossary available

/core/hide-implementation: Hide irrelevant implementation details

/core/http-safety: Adhere to HTTP safety and idempotency semantics for operations

/core/stateless: Do not maintain session state on the server

/core/nested-child: Use nested URIs for child resources

/core/resource-operations: Model resource operations as a sub-resource or dedicated resource

/core/doc-language: Publish documentation in Dutch unless there is existing documentation in
English

/core/deprecation-schedule: Include a deprecation schedule when deprecating features or
versions

/core/transition-period: Schedule a fixed transition period for a new major API version

/core/changelog: Publish a changelog for API changes between versions

/core/geospatial: Apply the geospatial module for geospatial data

/core/no-trailing-slash: Leave off trailing slashes from URIs

2. Summary§

2.1 Normative Design Rules§

2.1.1 List of functional rules§

2.1.2 List of technical rules§



Functional

/core/http-methods: Only apply standard HTTP methods

/core/doc-openapi: Use OpenAPI Specification for documentation

/core/publish-openapi: Publish OAS document at a standard location in JSON-format

/core/uri-version: Include the major version number in the URI

/core/semver: Adhere to the Semantic Versioning model when releasing API changes

/core/version-header: Return the full version number in a response header

/core/transport-security: Apply the transport security module

The REST architectural style is centered around the concept of a resource. A resource is the key
abstraction of information, where every piece of information is named by assigning a globally
unique URI (Uniform Resource Identifier). Resources describe things, which can vary between
physical objects (e.g. a building or a person) and more abstract concepts (e.g. a permit or an event).

/core/naming-resources: Use nouns to name resources

Statement
Resources are referred to using nouns (instead of verbs) that are relevant from the
perspective of the user of the API.

A few correct examples of nouns as part of a URI:

Gebouw

Vergunning

This is different than RPC-style APIs, where verbs are often used to perform
certain actions:

Opvragen

Registreren

Rationale
Resources describe objects not actions.

3. The core set of Design Rules§

3.1 Resources§



Functional

Implications
Adherence to this rule needs to be manually verified.

A resource describing a single thing is called a singular resource. Resources can also be grouped
into collections, which are resources in their own right and can typically be paged, sorted and
filtered. Most often all collection members have the same type, but this is not necessarily the case.
A resource describing multiple things is called a collection resource. Collection resources typically
contain references to the underlying singular resources.

/core/naming-collections: Use plural nouns to name collection resources

Statement
A collection resource represents multiple things.

Rationale
The path segment describing the name of the collection resource MUST be written
in the plural form.

Example collection resources, describing a list of things:

https://api.example.org/v1/gebouwen

https://api.example.org/v1/vergunningen

Singular resources contained within a collection resource are generally named by
appending a path segment for the identification of each individual resource.

Example singular resource, contained within a collection resource:

https://api.example.org/v1/gebouwen/3b9710c4-6614-467a-ab82

https://api.example.org/v1/vergunningen/d285e05c-6b01-45c3

Singular resources that stand on their own, i.e. which are not contained within a
collection resource, MUST be named with a path segment that is written in the
singular form.



Functional

Technical

Example singular resource describing the profile of the currently authenticated
user:

https://api.example.org/v1/gebruikersprofiel

Implications
Adherence to this rule needs to be manually verified.

/core/interface-language: Define interfaces in Dutch unless there is an
official English glossary available

Statement
Resources and the underlying attributes SHOULD be defined in the Dutch
language unless there is an official English glossary available.

Rationale
The exact meaning of concepts is often lost in translation. Publishing an API for an
international audience might also be a reason to define interfaces in English. Note
that glossaries exist that define useful sets of attributes which SHOULD preferably
be reused. Examples can be found at schema.org.

Implications
Adherence to this rule needs to be manually verified.

/core/no-trailing-slash: Leave off trailing slashes from URIs

Statement
A URI MUST never contain a trailing slash. When requesting a resource including
a trailing slash, this MUST result in a 404 (not found) error response and not a
redirect. This enforces API consumers to use the correct URI.

Rationale
Leaving off trailing slashes, and not implementing a redirect, enforces API
consumers to use the correct URI. This avoids confusion and ambiguity.

http://schema.org/docs/schemas.html


Functional

URI without a trailing slash (correct):

https://api.example.org/v1/gebouwen

URI with a trailing slash (incorrect):

https://api.example.org/v1/gebouwen/

Implications
This rule can be tested automatically and an example of the test is included in the
automatic tests on developer.overheid.nl. The specific tests are published in the
[ADR-Validator] repository.

How to test
Loop all resource paths in the OpenAPI Description and check that no resources
paths end with a forward slash (/).

/core/hide-implementation: Hide irrelevant implementation details

Statement
An API SHOULD not expose implementation details of the underlying application,
development platforms/frameworks or database systems/persistence models.

Rationale

The primary motivation behind this design rule is that an API design MUST
focus on usability for the client, regardless of the implementation details
under the hood.

The API, application and infrastructure need to be able to evolve
independently to ease the task of maintaining backwards compatibility for
APIs during an agile development process.

The API design of Convenience,- and Process API types (as described in
Aanbeveling 2 of the NL API Strategie) SHOULD not be a 1-on-1 mapping of
the underlying domain- or persistence model.

The API design of a System API type (as described in Aanbeveling 2 of the
NL API Strategie) MAY be a mapping of the underlying persistence model.

Implications

The API SHOULD not expose information about the technical components
being used, such as development platforms/frameworks or database systems.

https://developer.overheid.nl/
https://docs.geostandaarden.nl/api/def-hr-API-Strategie-20200204/#aanbeveling-2-analyseer-welke-api-s-je-aan-moet-bieden-welke-informatievragen-wil-je-beantwoorden
https://docs.geostandaarden.nl/api/def-hr-API-Strategie-20200204/#aanbeveling-2-analyseer-welke-api-s-je-aan-moet-bieden-welke-informatievragen-wil-je-beantwoorden


Technical

The API SHOULD offer client-friendly attribute names and values, while
persisted data may contain abbreviated terms or serializations which might be
cumbersome for consumption.

Although the REST architectural style does not impose a specific protocol, REST APIs are
typically implemented using HTTP [rfc7231].

/core/http-methods: Only apply standard HTTP methods

Statement
Resources MUST be retrieved or manipulated using standard HTTP methods
(GET/POST/PUT/PATCH/DELETE).

Rationale
The HTTP specifications offer a set of standard methods, where every method is
designed with explicit semantics. Adhering to the HTTP specification is crucial,
since HTTP clients and middleware applications rely on standardized
characteristics.

Method Operation Description

GET Read
Retrieve a resource representation for the given
URI. Data is only retrieved and never modified.

POST Create

Create a subresource as part of a collection
resource. This operation is not relevant for singular
resources. This method can also be used for
exceptional cases.

PUT Create/update
Create a resource with the given URI or replace
(full update) a resource when the resource already
exists.

PATCH Update
Partially updates an existing resource. The request
only contains the resource modifications instead of
the full resource representation.

DELETE Delete Remove a resource with the given URI.

Implications
This rule can be tested automatically and an example of the test is included in the
automatic tests on developer.overheid.nl. The specific testscripts are published in

3.2 HTTP methods§

https://developer.overheid.nl/


the [ADR-Validator] repository.

The following table shows some examples of the use of standard HTTP methods:

Request Description

GET /rijksmonumenten Retrieves a list of national monuments.

GET /rijksmonumenten/12
Retrieves an individual national
monument.

POST /rijksmonumenten Creates a new national monument.

PUT /rijksmonumenten/12
Modifies national monument #12
completely.

PATCH /rijksmonumenten/12 Modifies national monument #12 partially.

DELETE

/rijksmonumenten/12
Deletes national monument #12.

NOTE

The HTTP specification [rfc7231] and the later introduced PATCH method
specification [rfc5789] offer a set of standard methods, where every method is
designed with explicit semantics. HTTP also defines other methods, e.g. HEAD,
OPTIONS, TRACE, and CONNECT.
The OpenAPI Specification 3.x Path Item Object also supports these methods,
except for CONNECT.
According to RFC 7231 4.1 the GET and HEAD HTTP methods MUST be supported
by the server, all other methods are optional.
In addition to the standard HTTP methods, a server may support other optional
methods as well, e.g. PROPFIND, COPY, PURGE, VIEW, LINK, UNLINK, LOCK,
UNLOCK, etc.
If an optional HTTP request method is sent to a server and the server does not
support that HTTP method for the target resource, an HTTP status code 405
Method Not Allowed shall be returned and a list of allowed methods for the
target resource shall be provided in the Allow header in the response as stated in
RFC 7231 6.5.5.

How to test
The OpenAPI Description MUST NOT include non standard HTTP methods for
retrieving or manipulating resources.

https://spec.openapis.org/oas/v3.0.3#path-item-object
https://datatracker.ietf.org/doc/html/rfc7231#section-4.1
https://datatracker.ietf.org/doc/html/rfc7231#section-6.5.5


Functional
/core/http-safety: Adhere to HTTP safety and idempotency semantics for
operations

Statement
The following table describes which HTTP methods MUST behave as safe and/or
idempotent:

Method Safe Idempotent

GET Yes Yes

HEAD Yes Yes

OPTIONS Yes Yes

POST No No

PUT No Yes

PATCH No No

DELETE No Yes

Rationale
The HTTP protocol [rfc7231] specifies whether an HTTP method SHOULD be
considered safe and/or idempotent. These characteristics are important for clients
and middleware applications, because they SHOULD be taken into account when
implementing caching and fault tolerance strategies.

Implications
Request methods are considered safe if their defined semantics are essentially
read-only; i.e., the client does not request, and does not expect, any state change on
the origin server as a result of applying a safe method to a target resource. A
request method is considered idempotent if the intended effect on the server of
multiple identical requests with that method is the same as the effect for a single
such request.

One of the key constraints of the REST architectural style is stateless communication between
client and server. It means that every request from client to server must contain all of the
information necessary to understand the request. The server cannot take advantage of any stored
session context on the server as it didn’t memorize previous requests. Session state must therefore
reside entirely on the client.

3.3 Statelessness§



Functional

To properly understand this constraint, it's important to make a distinction between two different
kinds of state:

Session state: information about the interactions of an end user with a particular client
application within the same user session, such as the last page being viewed, the login state or
form data in a multi-Step registration process. Session state must reside entirely on the client
(e.g. in the user's browser).

Resource state: information that is permanently stored on the server beyond the scope of a
single user session, such as the user's profile, a product purchase or information about a
building. Resource state is persisted on the server and must be exchanged between client and
server (in both directions) using representations as part of the request or response payload.
This is actually where the term REpresentational State Transfer (REST) originates from.

NOTE

It's a misconception that there should be no state at all. The stateless communication constraint
should be seen from the server's point of view and states that the server should not be aware of
any session state.

Stateless communication offers many advantages, including:

Simplicity is increased because the server doesn't have to memorize or retrieve session state
while processing requests

Scalability is improved because not having to incorporate session state across multiple
requests enables higher concurrency and performance

Observability is improved since every request can be monitored or analyzed in isolation
without having to incorporate session context from other requests

Reliability is improved because it eases the task of recovering from partial failures since the
server doesn't have to maintain, update or communicate session state. One failing request does
not influence other requests (depending on the nature of the failure of course).

/core/stateless: Do not maintain session state on the server

Statement
In the context of REST APIs, the server MUST not maintain or require any notion
of the functionality of the client application and the corresponding end user
interactions.

Rationale
To achieve full decoupling between client and server, and to benefit from the
advantages mentioned above, no session state MUST reside on the server. Session
state MUST therefore reside entirely on the client.



Functional

Implications
Adherence to this rule needs to be manually verified.

NOTE

The client of a REST API could be a variety of applications such as a browser
application, a mobile or desktop application and even another server serving as a
backend component for another client. REST APIs should therefore be completely
client-agnostic.

Resources are often interconnected by relationships. Relationships can be modelled in different
ways depending on the cardinality, semantics and more importantly, the use cases and access
patterns the REST API needs to support.

/core/nested-child: Use nested URIs for child resources

Statement
When having a child resource which can only exist in the context of a parent
resource, the URI SHOULD be nested.

Rationale
In this use case, the child resource does not necessarily have a top-level collection
resource. The best way to explain this design rule is by example.

3.4 Relationships§



When modelling resources for a news platform including the ability for users to
write comments, it might be a good strategy to model the collection resources
hierarchically:

https://api.example.org/v1/articles/123/comments

The platform might also offer a photo section, where the same commenting
functionality is offered. In the same way as for articles, the corresponding sub-
collection resource might be published at:

https://api.example.org/v1/photos/456/comments

These nested sub-collection resources can be used to post a new comment (POST
method) and to retrieve a list of comments (GET method) belonging to the parent
resource, i.e. the article or photo. An important consideration is that these comments
could never have existed without the existence of the parent resource.

From the consumer's perspective, this approach makes logical sense, because the
most obvious use case is to show comments below the parent article or photo (e.g.
on the same web page) including the possibility to paginate through the comments.
The process of posting a comment is separate from the process of publishing a new
article. Another client use case might also be to show a global latest comments
section in the sidebar. For this use case, an additional resource could be provided:

https://api.example.org/v1/comments

If this would have not been a meaningful use case, this resource should not exist at
all. Because it doesn't make sense to post a new comment from a global context, this
resource would be read-only (only GET method is supported) and may possibly
provide a more compact representation than the parent-specific sub-collections.

The singular resources for comments, referenced from all 3 collections, could still
be modelled on a higher level to avoid deep nesting of URIs (which might increase
complexity or problems due to the URI length):

https://api.example.org/v1/comments/123

https://api.example.org/v1/comments/456

Although this approach might seem counterintuitive from a technical perspective
(we simply could have modelled a single /comments resource with optional filters
for article and photo) and might introduce partially redundant functionality, it makes



Functional

perfect sense from the perspective of the consumer, which increases developer
experience.

Implications
Adherence to this rule needs to be manually verified.

/core/resource-operations: Model resource operations as a sub-resource or
dedicated resource

Statement
Model resource operations as a sub-resource or dedicated resource.

Rationale
There are resource operations which might not seem to fit well in the CRUD
interaction model. For example, approving of a submission or notifying a
customer. Depending on the type of the operation, there are three possible
approaches:

1. Re-model the resource to incorporate extra fields supporting the particular
operation. For example, an approval operation can be modelled in a boolean
attribute goedgekeurd that can be modified by issuing a PATCH request
against the resource. Drawback of this approach is that the resource does not
contain any metadata about the operation (when and by whom was the
approval given? Was the submission declined in an earlier stage?).
Furthermore, this requires a fine-grained authorization model, since approval
might require a specific role.

2. Treat the operation as a sub-resource. For example, model a sub-collection
resource /inzendingen/12/beoordelingen and add an approval or
declination by issuing a POST request. To be able to retrieve the review
history (and to consistently adhere to the REST principles), also support the
GET method for this resource. The /inzendingen/12 resource might still
provide a goedgekeurd boolean attribute (same as approach 1) which gets
automatically updated on the background after adding a review. This attribute
SHOULD however be read-only.

3. In exceptional cases, the approaches above still don't offer an appropriate
solution. An example of such an operation is a global search across multiple

3.5 Operations§



Technical

resources. In this case, the creation of a dedicated resource, possibly nested
under an existing resource, is the most obvious solution. Use the imperative
mood of a verb, maybe even prefix it with a underscore to distinguish these
resources from regular resources. For example: /search or /_search.
Depending on the operation characteristics, GET and/or POST method MAY be
supported for such a resource.

Implications
Adherence to this rule needs to be manually verified.

An API is as good as the accompanying documentation. The documentation has to be easily
findable, searchable and publicly accessible. Most developers will first read the documentation
before they start implementing. Hiding the technical documentation in PDF documents and/or
behind a login creates a barrier for both developers and search engines.

/core/doc-openapi: Use OpenAPI Specification for documentation

Statement
API documentation MUST be provided in the form of an OpenAPI definition
document which conforms to the OpenAPI Specification (from v3 onwards).

Rationale
The OpenAPI Specification (OAS) [OPENAPIS] defines a standard, language-
agnostic interface to RESTful APIs which allows both humans and computers to
discover and understand the capabilities of the service without access to source
code, documentation, or through network traffic inspection. When properly
defined, a consumer can understand and interact with the remote service with a
minimal amount of implementation logic. API documentation MUST be provided
in the form of an OpenAPI definition document which conforms to the OpenAPI
Specification (from v3 onwards). As a result, a variety of tools can be used to
render the documentation (e.g. Swagger UI or ReDoc) or automate tasks such as
testing or code generation. The OAS document SHOULD provide clear
descriptions and examples.

Implications
This rule can be tested automatically and an example of the test is included in the
automatic tests on developer.overheid.nl. The specific tests are published in the
[ADR-Validator] repository.

3.6 Documentation§

https://developer.overheid.nl/


Functional

Technical

How to test

Step 1: The API MUST meet the prerequisets to be tested. These include that
an OAS file is publicly available, parsable, all $refs are resolvable and paths
are defined.

Step 2: Check the specification type.

Step 3: All references MUST be publicly resolvable, including the external
references.

/core/doc-language: Publish documentation in Dutch unless there is existing
documentation in English

Statement
You SHOULD write the OAS document in Dutch.

Rationale
In line with design rule /core/interface-language, the OAS document (e.g.
descriptions and examples) SHOULD be written in Dutch. If relevant, you MAY
refer to existing documentation written in English.

Implications
Adherence to this rule needs to be manually verified.

/core/publish-openapi: Publish OAS document at a standard location in
JSON-format

Statement
To make the OAS document easy to find and to facilitate self-discovering clients,
there SHOULD be one standard location where the OAS document is available for
download.

Rationale
Clients (such as Swagger UI or ReDoc) MUST be able to retrieve the document
without having to authenticate. Furthermore, the CORS policy for this URI MUST
allow external domains to read the documentation from a browser environment.

The standard location for the OAS document is a URI called openapi.json or
openapi.yaml within the base path of the API. This can be convenient, because
OAS document updates can easily become part of the CI/CD process.



Functional

At least the JSON format MUST be supported. When having multiple (major)
versions of an API, every API SHOULD provide its own OAS document(s).

An API having base path https://api.example.org/v1/ MUST publish
the OAS document at:

https://api.example.org/v1/openapi.json

Optionally, the same OAS document MAY be provided in YAML format:

https://api.example.org/v1/openapi.yaml

Implications
This rule can be tested automatically and an example of the test is included in the
automatic tests on developer.overheid.nl. The specific tests are published in the
[ADR-Validator] repository.

How to test

Step 1: The API MUST meet the prerequisets to be tested. These include that
an OAS file (openapi.json) is publicly available, parsable, all $refs are
resolvable and paths are defined.

Step 2: The openapi.yaml MAY be available. If available it MUST contain
yaml, be readable and parsable.

Step 3: The openapi.yaml MUST contain the same OpenAPI Description as
the openapi.json.

Step 4: The CORS header Access-Control-Allow-Origin MUST allow all
origins.

Changes in APIs are inevitable. APIs should therefore always be versioned, facilitating the
transition between changes.

/core/deprecation-schedule: Include a deprecation schedule when
deprecating features or versions

3.7 Versioning§

https://developer.overheid.nl/


Functional

Technical

Statement
Implement well documented and timely communicated deprecation schedules.

Rationale
Managing change is important. In general, well documented and timely
communicated deprecation schedules are the most important for API users. When
deprecating features or versions, a deprecation schedule MUST be published. This
document SHOULD be published on a public web page. Furthermore, active
clients SHOULD be informed by e-mail once the schedule has been updated or
when versions have reached end-of-life.

Implications
Adherence to this rule needs to be manually verified.

/core/transition-period: Schedule a fixed transition period for a new major
API version

Statement
Old versions MUST remain available for a limited and fixed deprecation period.

Rationale
When releasing a new major API version, the old version MUST remain available
for a limited and fixed deprecation period. Offering a deprecation period allows
clients to carefully plan and execute the migration from the old to the new API
version, as long as they do this prior to the end of the deprecation period. A
maximum of 2 major API versions MAY be published concurrently.

Implications
Adherence to this rule needs to be manually verified.

/core/uri-version: Include the major version number in the URI

Statement
The URI of an API MUST include the major version number.

Rationale
The URI of an API (base path) MUST include the major version number, prefixed
by the letter v. This allows the exploration of multiple versions of an API in the
browser. The minor and patch version numbers are not part of the URI and MAY
not have any impact on existing client implementations.



Functional

An example of a base path for an API with current version 1.0.2:

https://api.example.org/v1/

version: '1.0.2'

servers:

                  - description: test environment  

                  url: https://api.test.example.org/v1/  

                  - description: production environment  

                  url: https://api.example.org/v1/

Implications
This rule can be tested automatically and an example of the test is included in the
automatic tests on developer.overheid.nl. The specific tests are published in the
[ADR-Validator] repository.

How to test

Step 1: The base path MUST contain a version number.

Step 2: Each url of the server object of the OpenAPI Description MUST
include a version number.

Step 3: The version in the OAS file MUST be the same as the version in the
base path.

/core/changelog: Publish a changelog for API changes between versions

Statement
Publish a changelog.

Rationale
When releasing new (major, minor or patch) versions, all API changes MUST be
documented properly in a publicly available changelog.

Implications
Adherence to this rule needs to be manually verified.

https://developer.overheid.nl/


Technical

Technical

/core/semver: Adhere to the Semantic Versioning model when releasing API
changes

Statement
Implement Semantic Versioning.

Rationale
Version numbering MUST follow the Semantic Versioning [SemVer] model to
prevent breaking changes when releasing new API versions. Release versions are
formatted using the major.minor.patch template (examples: 1.0.2, 1.11.0). Pre-
release versions MAY be denoted by appending a hyphen and a series of dot
separated identifiers (examples: 1.0.2-rc.1, 2.0.0-beta.3). When releasing a new
version which contains backwards-incompatible changes, a new major version
MUST be released. Minor and patch releases MAY only contain backwards
compatible changes (e.g. the addition of an endpoint or an optional attribute).

Implications
This rule can be tested automatically and an example of the test is included in the
automatic tests on developer.overheid.nl. The specific tests are published in the
[ADR-Validator] repository.

How to test
The "API-Version" response header MUST comply with Semantic Versioning.

/core/version-header: Return the full version number in a response header

Statement
Return the API-Version header.

Rationale
Since the URI only contains the major version, it's useful to provide the full
version number in the response headers for every API call. This information could
then be used for logging, debugging or auditing purposes. In cases where an
intermediate networking component returns an error response (e.g. a reverse proxy
enforcing access policies), the version number MAY be omitted.

The version number MUST be returned in an HTTP response header named API-
Version (case-insensitive) and SHOULD not be prefixed.

https://developer.overheid.nl/


Technical

An example of an API version response header:

API-Version: 1.0.2

Implications
This rule can be tested automatically and an example of the test is included in the
automatic tests on developer.overheid.nl. The specific tests are published in the
[ADR-Validator] repository.

How to test
A response MUST include the header "API-Version".

Transport security is essential to safeguard the confidentiality, integrity, and authenticity of data
during its transmission.

/core/transport-security: Apply the transport security module

Statement
The API Design Rules Module: Transport Security MUST be applied.

Rationale
The API Design Rules Module: Transport Security formalizes three rules to apply
to APIs:

1. Secure connections using TLS

2. No sensitive information in URIs

3. Use CORS to control access

Furthermore, the module describes best practices for security headers, browser-
based applications, and other HTTP configurations. These best practices MUST be
considered and the considerations SHOULD be published in the API
documentation. Transport security is the baseline for REST API resources and the
data concerned is a vital asset of the government. The rules and best practices are
considered the minimal security principles, concepts and technologies to apply.

3.8 Transport Security§

https://developer.overheid.nl/
https://gitdocumentatie.logius.nl/publicatie/api/mod-ts/
https://gitdocumentatie.logius.nl/publicatie/api/mod-ts/


Functional

Implications
This rule is included in the automatic tests on developer.overheid.nl. The source
code of the technical test can be found here.

Geospatial data refers to information that is associated with a physical location on Earth, often
expressed by its 2D/3D coordinates.

/core/geospatial: Apply the geospatial module for geospatial data

Statement
The API Design Rules Module: Geospatial MUST be applied when providing
geospatial data or functionality.

Rationale
The API Design Rules Module: Geospatial formalizes as set of rules regarding:

1. How to encode geospatial data in request and response payloads.

2. How resource collections can be filtered by a given bounding box.

3. How to deal with different coordinate systems (CRS).

Implications
Adherence to this rule needs to be manually verified.

Resource
A resource is the key abstraction of information, where every piece of information is
identified by a globally unique URI.

Singular resource
A singular resource is a resource describing a single thing (e.g. a building, person or event).

Collection resource
A collection resource is a resource describing multiple things (e.g. a list of buildings).

URI
A URI [rfc3986] (Uniform Resource Identifier) is a globally unique identifier for a resource.

3.9 Geospatial§

4. Glossary§

https://developer.overheid.nl/
https://gitlab.com/commonground/don/adr-validator/-/blob/main/pkg/adr/rules.go
https://gitdocumentatie.logius.nl/publicatie/api/mod-geo/
https://gitdocumentatie.logius.nl/publicatie/api/mod-geo/


OGC
The Open Geospatial Consortium (OGC) is a consortium of experts committed to improving
access to geospatial, or location information.

[ADR-GEO]
API Design Rules Module: Geospatial. L. van den Brink, P. Bresters, P. van Genuchten, G.
Mathijssen, M. Strijker. Geonovum. March 07, 2024. URL:
https://gitdocumentatie.logius.nl/publicatie/api/mod-geo/

[ADR-TS]
API Design Rules Module: Transport Security. . Kennisplatform API's. March 07, 2024. URL:
https://gitdocumentatie.logius.nl/publicatie/api/mod-ts/

[ADR-Validator]
Technical ADR Validation rule testset 0.5.0. H. Stijns. Geonovum. November 2023. URL:
https://gitlab.com/commonground/don/adr-validator/-/tree/v0.5.0/pkg/rulesets

[OPENAPIS]
OpenAPI Specification. Darrell Miller; Jason Harmon; Jeremy Whitlock; Marsh Gardiner;
Mike Ralphson; Ron Ratovsky; Tony Tam; Uri Sarid. OpenAPI Initiative. URL:
https://www.openapis.org/

[RFC2119]
Key words for use in RFCs to Indicate Requirement Levels. S. Bradner. IETF. March 1997.
Best Current Practice. URL: https://www.rfc-editor.org/rfc/rfc2119

[rfc3986]
Uniform Resource Identifier (URI): Generic Syntax. T. Berners-Lee; R. Fielding; L. Masinter.
IETF. January 2005. Internet Standard. URL: https://www.rfc-editor.org/rfc/rfc3986

[rfc7231]
Hypertext Transfer Protocol (HTTP/1.1): Semantics and Content. R. Fielding, Ed.; J.
Reschke, Ed.. IETF. June 2014. Proposed Standard. URL:
https://httpwg.org/specs/rfc7231.html

[RFC8174]
Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words. B. Leiba. IETF. May 2017.
Best Current Practice. URL: https://www.rfc-editor.org/rfc/rfc8174

[SemVer]
Semantic Versioning 2.0.0. T. Preston-Werner. June 2013. URL: https://semver.org

A. References§

A.1 Normative references§

https://www.ogc.org/
https://gitdocumentatie.logius.nl/publicatie/api/mod-geo/
https://gitdocumentatie.logius.nl/publicatie/api/mod-geo/
https://gitdocumentatie.logius.nl/publicatie/api/mod-ts/
https://gitdocumentatie.logius.nl/publicatie/api/mod-ts/
https://gitlab.com/commonground/don/adr-validator/-/tree/v0.5.0/pkg/rulesets
https://gitlab.com/commonground/don/adr-validator/-/tree/v0.5.0/pkg/rulesets
https://www.openapis.org/
https://www.openapis.org/
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc3986
https://www.rfc-editor.org/rfc/rfc3986
https://httpwg.org/specs/rfc7231.html
https://httpwg.org/specs/rfc7231.html
https://www.rfc-editor.org/rfc/rfc8174
https://www.rfc-editor.org/rfc/rfc8174
https://semver.org/
https://semver.org/


[rfc5789]
PATCH Method for HTTP. L. Dusseault; J. Snell. IETF. March 2010. Proposed Standard.
URL: https://httpwg.org/specs/rfc5789.html

↑

A.2 Informative references§

https://httpwg.org/specs/rfc5789.html
https://httpwg.org/specs/rfc5789.html

