
FSC - Core
Logius Standard
Draft September 08, 2025

This version:
https://logius-standaarden.github.io/fsc-core/

Latest published version:
https://gitdocumentatie.logius.nl/publicatie/fsc/core/

Latest editor's draft:
https://logius-standaarden.github.io/fsc-core/

Previous version:
https://gitdocumentatie.logius.nl/publicatie/fsc/core/1.0.1/

Editors:
VNG Realisatie (VNG)
Logius (Logius)

Authors:
Eelco Hotting (Hotting IT), Email
Ronald Koster (PhillyShell), Email
Henk van Maanen (AceWorks), Email
Niels Dequeker (ND Software), Email
Edward van Gelderen (vanG IT), Email
Pim Gaemers (Apily), Email

Participate:
GitHub Logius-standaarden/fsc-core
File an issue
Commit history
Pull requests

This document is also available in these non-normative format: pdf

This document is licensed under
Creative Commons Attribution 4.0 International Public License

Abstract

This Federated Service Connectivity (FSC) standard describes how different parties (within FSC known
as Peers) should interact when exchanging data in a uniform, secure and automated manner. The goal of
FSC is to achieve technically interoperable API gateway functionality, covering federated authentication
and secure connections in a large-scale dynamic API landscape.

Lo
gi

us
 S

ta
nd

ar
d

- D
ra

ft

https://www.logius.nl/onze-dienstverlening/standaarden
https://logius-standaarden.github.io/fsc-core/
https://gitdocumentatie.logius.nl/publicatie/fsc/core/
https://logius-standaarden.github.io/fsc-core/
https://gitdocumentatie.logius.nl/publicatie/fsc/core/1.0.1/
https://vng.nl/rubrieken/onderwerpen/standaarden
https://github.com/Logius-standaarden
mailto:rfc@hotting.it
mailto:rfc@phillyshell.nl
mailto:henk.van.maanen@aceworks.nl
mailto:niels@nd-software.be
mailto:e.van.gelderen@vang.nl
mailto:pim.gaemers@apily.dev
https://github.com/Logius-standaarden/fsc-core/
https://github.com/Logius-standaarden/fsc-core/issues/
https://github.com/Logius-standaarden/fsc-core/commits/
https://github.com/Logius-standaarden/fsc-core/pulls/
http://localhost:8080/fsc-core-1.1.0.pdf
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode

1.
1.1
1.2
1.3
1.3.1

1.3.2

1.3.3

2.

3.
3.1
3.2
3.2.1

3.3

The core of FSC is to manage (service) connections between FSC Peers via mutually agreed and signed
contracts. These contracts are the technical prerequisite for connecting to services. Contracts are
negotiated, and signed in a decentralized federated manner.

In addition to service connectivity, FSC provides a scheme for service discovery using a centralized
directory. Peers providing services can voluntarily publish (some of) their services into this directory.
Peers consuming services can find the required location information for initiating contract negotiation
for a particular service in this directory.

Security is at the foreground in FSC. Peers collaborating via FSC need to collaborate with each other in
a FSC Group. The FSC Group is used for establishing trust between peers using a Public Key
Infrastructure (PKI) scheme. Technically FSC leverages PKI based on x.509 architecture to establish
trust between Peers. Participating Peers agree on a Root CA acting as Trust Anchor. All connections
between Peers leverage mTLS and contracts are cryptographically signed. This combination ensures
strong confidentiality and integrity.

Status of This Document

This is a draft that could be altered, removed or replaced by other documents. It is not a
recommendation approved by TO.

Table of Contents

Abstract

Status of This Document

Introduction
Purpose
Terminology
Overall Operation of FSC Core

Extensions

Group rules & restrictions

Use cases

Guidelines

Architecture
Identity and Trust
Contract Management

Contract states

Creating a Group

3.4
3.5
3.6
3.6.1

3.6.2

3.7
3.8

4.
4.1
4.1.1

4.1.2

4.1.3

4.1.4

4.1.5

4.1.6
4.1.6.1

4.1.6.2

4.1.7

4.2
4.2.1
4.2.1.1

4.2.1.2

4.2.1.3

4.2.1.4

4.2.2
4.2.2.1

4.2.2.2

4.2.3
4.2.3.1

4.2.4

4.2.5
4.2.5.1

4.2.5.2

4.2.5.3

4.2.5.4

4.2.6

4.3
4.3.1

4.4
4.4.1
4.4.1.1

4.4.1.2

Service discovery
Create an authorization to connect to a Service
Delegate the authorization to connect to a Service

A delegated service connection

Combining a delegated service publication with a delegated service connection

Consuming a Service
Use cases and required components

Specifications
Protocols

Port configuration

Group ID

Peer ID

Peer name

Trust Anchor

TLS configuration
TLS Version

Certificate & Public key thumbprints

Error Handling

Contracts
Contract Validation

ServicePublicationGrant

DelegatedServicePublicationGrant

ServiceConnectionGrant

DelegatedServiceConnectionGrant

Signatures
Payload fields

Signature types

The content hash
Data types

Grant hash

Type mappings
Hash types

Grant types

Hash algorithms

Service types

Certificate renewal

Access token
JWT Payload

Manager
Behavior

Authentication

Contracts

4.4.1.3

4.4.1.4

4.4.1.5

4.4.1.6

4.4.1.7

4.4.1.8

4.4.1.9

4.4.2

4.4.3

4.4.4

4.4.5
4.4.5.1

4.4.5.2

4.4.5.3

4.5
4.5.1
4.5.1.1

4.6
4.6.1
4.6.1.1

4.6.1.2

4.6.1.3

4.6.1.4

4.6.1.4.1

4.7
4.7.1
4.7.1.1

4.7.1.2

4.7.1.3

4.7.2
4.7.2.1

4.7.2.2

4.7.2.2.1

4.8

5.

6.

A.
A.1

Signatures

Providing X.509 certificates

Providing contracts

Tokens

Services

Service listing

Peer listing

Announce

Interfaces

FSC manager address

Error response
OAuth 2.0 error response

Other endpoints

Codes

Directory
Behavior

Service publication

Outway
Behavior

Authentication

Routing

Obtaining access tokens

Error response

Codes

Inway
Behavior

Authentication

Authorization

Routing

Interfaces
Proxy Endpoint

Error response

Codes

References

Conformance

List of Figures

References
Normative references

This section gives an introduction to FSC. Section 2 describes the architecture of a system that follows
the FSC specification. Section 3 describes the interfaces and behavior of FSC components in detail.

The Federated Service Connectivity (FSC) specifications describe a way to implement technically
interoperable API gateway functionality, covering federated authentication and secure connecting in a
large-scale dynamic API landscape.

The Core part of the FSC specification achieves inter-organizational, technical interoperability:

to discover Services.

to route requests to Services in other contexts (e.g. from within organization A to organization B).

to request and manage authorizations needed to connect to said Services.

to delegate the authorization to connect or publish Services on behalf of another organization

Functionality required to achieve technical interoperability is provided by APIs as specified in this RFC.
This allows for automation of most management tasks, greatly reducing the administrative load and
enabling up-scaling of inter-organizational usage of services.

This specification lists terms and abbreviations as used in this document.

Peer:

Actor that provides and/or consumes Services. This is an abstraction of e.g. an organization, a
department or a security context.

Group:

System of Peers using Inways, Outways and Managers that confirm to the FSC specification to make
use of each other's Services. Governed by a set of rules and restrictions aligning on required parameters
needed for the practical workings of an FSC Group.

Inway:

Reverse proxy that handles incoming connections to one or more Services.

1. Introduction§

1.1 Purpose§

1.2 Terminology§

Outway:

Forward proxy that handles outgoing connections to Inways.

Contract:

Agreement between Peers defining what interactions between Peers are possible.

Delegator:

A Peer who delegates a connection authorization to a Service or the authorization to publish a Service to
another Peer.

Delegatee:

A Peer who acts on behalf of another Peer.

Grant:

Defines an interaction between Peers. Grants are part of a Contract. In FSC Core four Grants are
described.

1. The ServicePublicationGrant which specifies the authorization of a Peer to publish a Service in the
Group.

2. The ServiceConnectionGrant which specifies the authorization of a Peer to connect to a Service
provided by a Peer.

3. The DelegatedServicePublicationGrant which specifies the authorization of one peer to publish a
Service to the Group on behalf of another Peer.

4. The DelegatedServiceConnectionGrant which specifies the authorization of one Peer to connect to
a Service on behalf of another Peer.

Manager:

The Manager is an API which manages Contracts and acts as an authorization server which provides
access tokens.

Directory:

A Manager which acts as a Service and Peer discovery point of the Group.

Service:

An HTTP API offered to the Group.

Trust Anchor:

The Trust Anchor (TA) is an authoritative entity for which trust is assumed and not derived. In the case
of FSC, which uses an X.509 architecture, it is the root certificate from which the whole chain of trust is
derived.

Trust Anchor List:

A list of one or more Trust Anchors. In the case of FSC, which uses an X.509 architecture, it is a list of
all root certificates that are used as Trust Anchor. In practice this would be a list of one or more
Certificate Authorities (CA's). Certificates issued by a CA that acts as a Trust Anchor are trusted within
FSC Group.

Profile:

A set of rules providing further restrictions and governance of the FSC Group. A Profile aligns on
certain required parameters needed for the practical workings of an FSC Group.

Peers in a Group announce their HTTP APIs to the Group by publishing them as a Service to a
Directory. A Group can use multiple Directories which define the scope of the Group. Peers use the
Directories to discover what Services and Peers are available in the Group. Inways of a Peer expose
Services to the Group. Outways of a Peer connect to the Inway of a Peer providing a Service. Contracts
define the Service publication to the Group and connections between Peers. Peers can delegate the
authorization to connect a Service to other Peers using specific Grants on a Contract. Peers can delegate
the authorization to publish a Service to other Peers using specific Grants on a Contracts.

Outways are forward proxies that route outgoing connections to Inways.
Inways are reverse proxies that route incoming connections from Outways to Services.
Managers negotiate Contracts between Peers.
Managers provide access tokens which contain the authorization to connect a Service. Outways include
the access tokens in requests to Inways The address of an Inway offering a Service is contained in the
access token. Inways authorize connection attempts by validating access tokens. Services in the Group
can be discovered through a Directory.
The Manager's address of a Peer can be discovered through a Directory.

To connect to a Service, the Peer needs a Contract with a ServiceConnectionGrant or
DelegatedServiceConnectionGrant that specifies the connection. The FSC Core specification describes
how Contracts are created, accepted, rejected and revoked. Once an authorization to connect is granted
through a Contract, a connection from HTTP Client to HTTP Service will be authorized everytime an
HTTP request to the Service is made.

FSC Core specifies the basics for setting up and managing connections in a Group. Auxiliary
functionality for either an FSC Peer or an entire FSC Group can be realized with extensions. An
Extension performs a well scoped feature enhancing the overall working of FSC.

1.3 Overall Operation of FSC Core§

1.3.1 Extensions§

https://en.wikipedia.org/wiki/Certificate_authority

It is RECOMMENDED to use FSC Core with the following extensions, each specified in a dedicated
RFC:

FSC Logging, keep a log of requests to Services.

FSC Core provides the foundation for cooperation between organizations (Peers). However, in practice
additional decisions have to be made to guarantee a functioning Group within a broader context. For
example, it may be needed for a Group to have additional restrictions or agreements within the Group.
Certain Group rules and restrictions are required for the operation of the Group, others provide optional
agreements to enhance collaboration.

The following decisions MUST be part of the Profile:

1. Select one or more Trust Anchors to include in the Trust Anchor list

2. Select a Group ID

3. Select what determines the Peer ID

4. Select what determines the Peer name

5. Select at least one Peer who acts as the Directory of the Group

6. Decide what ports are used for management traffic

7. Determine requirements for allowed TLS versions and Cipher Suites

In addition to the mandatory decisions, a Group MAY also contain additional agreements or restrictions.
These are not technically required for the operation of FSC Core, but can become mandatory within a
Group. An example would be a set of additional rules in order to comply with local legislation. Below
are a few examples listed of these additional decisions for inspirational purposes:

1. Any extensions required by Peers within the Group

2. Agreements on data retention

3. The specifics of the retry mechanism used for Contract synchronization

4. Additional restrictions on Certificate revocation by mandating OCSP or CRL checks

A typical use case is a cooperation of many organizations that use APIs to exchange data or provide
other business services to each other.

1.3.2 Group rules & restrictions§

1.3.3 Use cases§

https://gitdocumentatie.logius.nl/publicatie/fsc/logging/

Organizations can participate in multiple Groups at the same time. Reasons for participating in multiple
Groups could be the use of different environments for production and test deployments or when
participating in different ecosystems like health industry and government industry.

An organization can offer the same API in multiple Groups. When doing so, the organization will be a
Peer in every Group, and define the API as a Service in one of the Directories of each Group using a
different Inway for each Group.

This section is non-normative.

There are no hard restrictions on the creation of FSC Groups. However, an FSC Group establishes the
boundaries for its Peers within this Group. Also, the characteristics of a Group are not easily changed.
Creating a Group should be a well considered decision.

This non-normative section offers some guidelines that may aid with the decision process in determining
whether it is beneficial to create a Group.

The Group defines the overall scope of collaboration between Peers. It defines technical requirements
for communication, like network ports, as well as establishing a network of trust for Peers to
collaborate within. Collaboration between Peers in a Group is facilitated, not mandated. Because of this
it is important to consider making the Group as broad as possible, so many Peers can become part of the
Group. In principle, fewer (but larger) Groups stimulate broader collaboration, as opposed to a more
dispersed Group landscape.

It is expected that the number of Groups will be limited. But there could be a need for a new Group if
more strict isolation is needed:

for example if FSC is also used within the boundaries of an internal network

a very specific trust anchor already is used for a specific domain

Creating a new Group may be appropriate if:

there is a need to isolate traffic on a network level between a set of Peers

requiring a specific trust anchor

Creating a new Group may not be the right approach if:

collaboration is temporary in nature

the appropriate trust anchor is already used in an existing Group

it is not known beforehand with which Peers there must be a collaboration in the future, or this may
vary over time

there is a need to collaborate with a lot of Peers

2. Guidelines§

This chapter describes the basic architecture of an FSC system.

Connections between Managers, Inways, Outways use Mutual Transport Layer Security (mTLS) with
X.509 certificates. Components in the Group are configured to accept the same (Sub-) Certificate
Authorities (CA) as defined in the Trust Anchors list (TA). Each TA is a Trusted Third Party that ensures
the identity of the Peers by verifying a set of fields of the subject field , section 4.1.2.6 of [RFC5279]
that act as PeerID in each X.509 certificate. When multiple TAs are used the TAs must ensure that the
elements of the subject field used to identify a Peer are the same across the TAs.

Core

mTLS connections with Trust Anchor X.509 certif icates

Group

Consuming PeerProviding Peer

Directory

Outway

Manager

Inway

Manager

Figure 1 mTLS Connections

3. Architecture§

3.1 Identity and Trust§

https://rfc-editor.org/rfc/rfc5280

Contracts are negotiated between the Managers of Peers. A Directory provides the address of each
Manager. Connections to Services are authorized by Contracts with ServiceConnectionGrants. To create
a new contract, the Manager uses a selection of desired connections as input. (Typically this input comes
from a user interface interacting with the Management functionality). For each desired connection, a
ServiceConnectionGrant is formulated that contains identifying information about both the Outway
from the Service consumer and the Service of the Service provider. One Contract may contain multiple
Grants. Grants typically match the connections mentioned in a legal agreement like a Data Processing
Agreement (DPA). Valid Contracts are used to configure Inways and Outways and enable the possibility
to automatically create on demand connections between Peers, as defined in the Grants. Contracts can
contain multiple Peers. E.g. if a Peer wants a single Contract for an application, this Contract can
contain all the connections required for that application.

Contract Management

Init iat ing Peer Directory Receiving Peer

Manager Directory Manager

loop [For each Peer on the Contract]

1 Get Manager address of Peer

2 Manager address of Peer

3 Contract proposal

Signed by initiating Peer

loop [For each Peer on the Contract]

4 Accept signature

Signed by receiving Peer(s)

Signed by all Peers

Core

Figure 2 Contract Management

1. The initiating Peer gets the address of the Manager from a Directory.

2. The Directory return the Manager address to the Peer.

3. The initiating Peer sends the Contract proposal with its accept signature to the receiving Peer.

4. The receiving Peer sends back its own accept signature to the initiating Peer.

3.2 Contract Management§

Any Peer can submit a Contract to other Peers. This Contract becomes valid when the Peers mentioned
in the Contract accept the Contract by placing an accept signature.

A Contract becomes invalid when at least one Peer mentioned in the Contract revokes the Contract.

A Contract becomes invalid when at least one Peer mentioned in the Contract rejects the Contract.

A Contract becomes invalid when the validity period of the Contract expires.

Accepting, rejecting and revoking is done by adding a digital signature.

The content of a Contract is immutable. When the content of a Contract is subject to change, the
Contract is invalidated and replaced by a new one.

Contract States

PROPOSED

REJECTED VALID

REVOKED EXPIRED

Proposal sent to involved Peers

End date passed Peer adds 'reject' signature All involved Peers add 'accept' signature

Peer adds 'revoke' signature End date passed

Figure 3 State Contract

3.2.1 Contract states§

A Group is a system of Peers using Inways, Outways and Managers that confirm to the FSC
specification to make use of each other's Services.

In order to create a Group, additional Group Rules & Restrictions containing at least the mandatory
decisions MUST be created.

Every Group is defined by at least one Directory, which contains the Services and Peers in the Group.
Peers can make themselves known to a Directory by having their Manager call the Announce endpoint
of the Directory.

When publishing services, Managers register Services by offering Contracts with a
ServicePublicationGrant or DelegatedServicePublicationGrant to the Directory.

Peers query the Directories to discover the Services available in the Group

Providing a Service

P e e r Directory

Manager Manager

1 Create Contract with a ServicePublicationGrant

2 Add accept signature

3 Submit Contract

4 Add accept signature

5 Accept Contract

Core

Figure 4 Providing a Service

1. The Peer creates a Contract with a Service Publication Grant which contains the details of the
Service.

2. The Peer adds its own accept signature to the Contract.

3. The Peer sends the Contract and accept signature to the Directory.

3.3 Creating a Group§

3.4 Service discovery§

4. The Directory adds its own accept signature.

5. The Directory sends the accept signature to the Peer.

A connection can be established if the Peer connecting to the Service has a valid Contract containing a
ServiceConnectionGrant with the Peer providing the Service. The connection Grants contains
information about the Service and the public key of the Outway that is authorized to connect to the
Service.

The Contract is distributed among the two Peers. Once the Contract is signed by all Peers, the Outway
can connect to the Inway offering the Service.

Create an authorization to connect to a Service

Consuming Peer Providing Peer

Manager Manager

1 Create Contract with a ServiceConnectionGrant

2 Add accept signature

3 Submit Contract

4 Add accept signature

5 Accept Contract

Core

Figure 5 Connecting to a Service

1. The Service consumer creates a Contract with a Service Connection Grant which contains the
details of the Service.

2. The Service consumer adds an accept signature to the Contract.

3. The Service consumer sends the Contract and the accept signature to the Service Provider.

4. The Service provider adds its own accept signature.

5. The Service provider sends the accept signature to the Service consumer.

When the Service is being offered on behalf of another Peer the Contract is distributed among three
Peers. The Peer acting as Delegator in the Service publication will also receive the Contract. Once the
Contract is signed by all the Peers, the Outway can connect to the Inway offering the Service on behalf
the Delegator.

3.5 Create an authorization to connect to a Service§

Create an authorization to connect to a Service that is offered on behalf of another Peer

Consuming Peer Providing Peer Delegator Service Publication

Manager Manager Manager

1 Create Contract with a ServiceConnectionGrant

2 Sign Contract

3 Submit Contract

4 Submit Contract

5 Sign Contract

6 Accept Contract

7 Accept Contract

8 Sign Contract

9 Accept Contract

1 0 Accept Contract

Core

Figure 6 Connecting to a Service that is offered on behalf of another Peer

1. The Service consumer creates a Contract with a Service Connection Grant which contains the
details of the Service.

2. The Service consumer adds an accept signature to the Contract.

3. The Service consumer sends the Contract and the accept signature to the Service provider.

4. The Service consumer sends the Contract and the accept signature to the Delegator of Service
Publication.

5. The Service provider adds its own accept signature.

6. The Service provider sends the accept signature to the Service consumer.

7. The Service provider sends the accept signature to the Delegator.

8. The Delegator adds its own accept signature.

9. The Delegator sends the accept signature to the Service provider.

10. The Delegator sends the accept signature to the Service consumer.

A connection on behalf of another Peer (delegation) can only be established if the Peer connecting to the
Service has a valid Contract containing a DelegatedServiceConnectionGrant with the Peer providing the
Service. The connection Grants contains information about the Service, the public key of the Outway
that is authorized to connect to the Service and the Peer acting as Delegator.

3.6 Delegate the authorization to connect to a Service§

3.6.1 A delegated service connection§

The Contract is distributed among the three Peers. Once the Contract is signed by all the Peers, the
Outway of the Delegatee can connect to the Inway offering the Service on behalf the Delegator.

Delegate the authorization to connect to a Service

Delegator D e l e g a t e e Service Provider

Manager Manager Manager

1 Create Contract with a
DelegateServiceConnectionGrant

2 Sign Contract

3 Submit Contract

4 Sign Contract

5 Accept Contract

6 Accept Contract

7 Submit Contract

8 Sign Contract

9 Accept Contract

1 0 Accept Contract

Delegation

Figure 7 Delegate a connection to a Service

1. The Delegator creates a Contract with a Delegated Service Connection Grant which contains the
details of the Service and the Peer who will be acting as Delegatee (who will consume the Service).

2. The Delegator adds its own accept signature to the Contract.

3. The Delegator sends the Contract and accept signature to the Delegatee.

4. The Delegatee adds its own accept signature.

5. The Delegatee sends the accept signature to the Delegator.

6. The Delegatee sends the accept signature to the Service Provider.

7. The Delegator sends the Contract and accept signature to the Service Provider.

8. The Service Provider adds its own accept signature.

9. The Service Provider sends the accept signature to the Delegatee.

10. The Service Provider sends the accept signature to the Delegator.

When the Service is being offered on behalf of another Peer the Contract is distributed among four
Peers. The Peer acting as Delegator in the Service publication will also receive the Contract. Once the
Contract is signed by all the Peers, the Outway of the Delegatee can connect to the Inway offering the
Service on behalf the Delegator.

Delegate the authorization to connect to a Service published on behalf of another Peer

Delegator D e l e g a t e e Service Provider Delegator Service Publication

Manager Manager Manager Manager

1 Create Contract with a
DelegateServiceConnectionGrant

2 Sign Contract

3 Submit Contract

4 Submit Contract

5 Submit Contract

6 Sign Contract

7 Accept Contract

8 Accept Contract

9 Accept Contract

1 0 Sign Contract

1 1 Accept Contract

1 2 Accept Contract

1 3 Accept Contract

1 4 Sign Contract

1 5 Accept Contract

1 6 Accept Contract

1 7 Accept Contract

Core

Figure 8 Delegate a connection to a Service that is offered on behalf of another Peer

1. The Delegator creates a Contract with a Delegated Service Connection Grant which contains the
details of the Service and the Peer who will be acting as Delegatee (who will consume the Service).

2. The Delegator adds its own accept signature to the Contract.

3. The Delegator sends the Contract and accept signature to the Delegatee.

4. The Delegator sends the Contract and accept signature to the Service provider.

5. The Delegator sends the Contract and accept signature to the Delegator of the Service publication.

6. The Delegatee adds its own accept signature.

7. The Delegatee sends the accept signature to the Delegator.

8. The Delegatee sends the accept signature to the Service provider.

3.6.2 Combining a delegated service publication with a delegated service connection§

9. The Delegatee sends the accept signature to the Delegator of the Service publication.

10. The Service provider adds its own accept signature.

11. The Service provider sends the accept signature to the Delegatee.

12. The Service provider sends the accept signature to the Delegator.

13. The Service provider sends the accept signature to the Delegator of the Service publication.

14. The Delegator of the Service publication adds its own accept signature.

15. The Delegator of the Service publication sends the accept signature to the Delegatee.

16. The Delegator of the Service publication sends the accept signature to the Delegator.

17. The Delegator of the Service publication sends the accept signature to the Service provider.

A Peer can consume a Service by sending request for said Service to an Outway. The Peer obtains an
access token from the Manager of the Peer providing the Service. The Outway proxies the request
including the access token to the Inway. The Inway will validate the access token and proxy the request
to the Service.

Establish a connection to a Service

Service Consumer Service Provider

Client Outway Inway Service

1 Request to Service

2 Request
with access token

3 Validate access token

4 Request

5 Response

6 Response

7 Response

Core

Figure 9 Consuming a Service

1. The client application sends a request to the Outway.

2. The Outway creates an connection with the Inway and proxies the request. In this diagram it is
assumed that the Outway already has an access token.

3.7 Consuming a Service§

3. The Inway validates the provided access token before proxying the request to the Service.

4. The Inway proxies the request to the Service.

5. The Service returns the response to the Inway.

6. The Inway returns the response to the Outway.

7. The Outway returns the response to the client.

Which components a Peer needs depends on the use case.

A Peer who wants to consume Services needs a Manager and an Outway.

A Peer who wants to offer Services needs a Manager and an Inway.

A Peer who wants to both consume and offer Services needs a Manager,an Outway and an Inway.

The Manager MUST support HTTP/1.1[RFC9112].

The Manager MAY support HTTP/2[RFC9113].

The protocol used between the Inway and Outway can be either HTTP/1.1[RFC9112] or
HTTP/2[RFC9113]. The protocol is determined by the protocol field of a Service as specified in the
object .components/schemas/serviceListingService of the OpenAPI Specification.

In order to provide a predictable network configuration FSC limits the selection of network ports to be
used by components. The ports used by FSC components MUST be 443 or 8443.

Port 443 is RECOMMENDED for data traffic i.e. HTTP requests to a Service.
Port 8443 is RECOMMENDED for management traffic i.e. submitting/signing Contracts.

Data traffic: Inway, Outway
Management Traffic: Directory, Manager

3.8 Use cases and required components§

4. Specifications§

4.1 Protocols§

4.1.1 Port configuration§

http://localhost:8080/manager.yaml

The Group ID is the identifier of the Group. This identifier is chosen by the Group upon creation of the
Group.
The Group ID MUST match the following regular expression ^[a-zA-Z0-9./_-]{1,100}$

Each Peer MUST have a unique identifier within the Group, this identifier is called the PeerID. The
PeerID is determined by at least one element from the subject field section 4.1.2.6 of [RFC5280] of an
X.509 certificate. Each Group MUST define which element(s) of the subject field of the X.509
certificate act as PeerID. The TA(s) issuing the certificates must ensure that PeerID is always the same
for a Peer in each issued certificate for said Peer.

Each Peer MUST have a human-readable name which can be used to identify a Peer. Unlike the PeerID
the name does not have to be unique. The name of Peer is determined by an element in the subject field
section 4.1.2.6 of [RFC5280] of an X.509 certificate. The Group MUST define which element of the
subject field is used.

The Trust Anchor (TA) is an authoritative entity for which trust is assumed and not derived. In the case
of FSC, which uses an X.509 architecture, it is the root certificate from which the whole chain of trust is
derived.

Each Group can have multiple TAs that are defined in a Trust Anchor List.

Every Peer in a Group MUST accept the same TA(s) that are defined in the Trust Anchor List defined by
the Group.

The TA SHOULD validate a Peers identity, i.e. the TA MUST perform Organization Validation.

4.1.2 Group ID§

4.1.3 Peer ID§

4.1.4 Peer name§

4.1.5 Trust Anchor§

https://rfc-editor.org/rfc/rfc5280
https://rfc-editor.org/rfc/rfc5280

Connections between Inways, Outways, Managers of a Group are mTLS connections based on X.509
certificates as defined in [RFC5280].

The certificate guarantees the identity of a Peer.

FSC places specific requirements on the subject fields of a certificate. section 4.1.2.6 of[RFC5280]
which are listed below

Subject Alternative Name section 4.1.2.6 of[RFC5280]: This should contain the Fully Qualified
Domain Names (FQDN) of a Manager, Inway or Outway. For an Outway this FQDN does not have
to resolve externally.

Subject Organization: This should contain to the name of the Organization.

The representation and verification of domains specified in the X.509 certificate MUST adhere to
[RFC6125]

The TLS versions used between Peers in a Group MUST be defined in the additional Group Rules &
Restrictions.

FSC differentiates between two different types of thumbprints, often also called fingerprints. Certificate
thumbprints and Public Key thumbprints.

Public Key thumbprints are used in FSC contracts, this enables the renewal of the certificate without
invalidating the contract, since the Public Key thumbprint remains the same between Certificate
renewals. Certificate thumbprints are used in the certificate-bound access tokens section 3 of
[RFC8705]. FSC uses certificate-bound access tokens to authorize a connection to a Service. Certificate
thumbprints are always part of a X.509 certificate and MUST be created as described in section 4.1.8 of
[RFC7515].

Within FSC both Certificate thumbprints and Public Key thumbprints uses the sha256 thumbprint.

4.1.6 TLS configuration§

4.1.6.1 TLS Version§

4.1.6.2 Certificate & Public key thumbprints§

https://www.rfc-editor.org/rfc/rfc5280#section-4.1.2.6
https://www.rfc-editor.org/rfc/rfc5280#section-4.1.2.6
https://www.rfc-editor.org/rfc/rfc8705#section-3
https://www.rfc-editor.org/rfc/rfc7515#section-4.1.8

The Inway and Outway both have a single endpoint which proxies HTTP requests. In case of an error
within the scope of FSC these components MUST return the HTTP header Fsc-Error-Code which
MUST contain the code specifying the error.

The response body must contain an object as described in .components/schemas/error of the
OpenAPI Specification.

The HTTP status codes that MUST be used in combination with the HTTP header Fsc-Error-Code are
defined in the sections 3.7.1.4 and 3.8.2.2.

The content of a Contract is defined in the object .components/schemas/contractContent of the
OpenAPI Specification

example Contract with a ServiceConnectionGrant

{

 "content": {

 "iv": "06338364-8305-7b74-8000-de4963503139",

 "group_id": "fsc-example-group",

 "validity": {

 "not_before": 1672527600,

 "not_after": 1704063600

 },

 "grants": [

 {

 "data": {

 "type": "GRANT_TYPE_SERVICE_CONNECTION",

 "service": {

 "peer_id": "00000000000000000001",

 "name": "example-service"

 },

 "outway": {

 "peer_id": "00000000000000000002",

 "public_key_thumbprint": "3a56f2e9269ac63f0d4394c46b96539da1625b6

 }

 }

 }

],

 "hash_algorithm": "HASH_ALGORITHM_SHA3_512",

4.1.7 Error Handling§

4.2 Contracts§

http://localhost:8080/manager.yaml
http://localhost:8080/manager.yaml

 "created_at": 1672527600

 }

}

A UUID MUST be provided in the field contract.iv. The value must be unique. Each Peer is
responsible for ensuring that only one Contract can exist with a given iv.

A hash algorithm is provided in the field contract.content.hash_algorithm.

The date provided in contract.content.created_at can not be in the future.

The Group ID of the Manager matches the Group ID defined in the field contract.group_id.

A valid date is provided in contract.content.validity.not_before.

A valid date is provided in contract.content.validity.not_after.

The date provided in contract.content.validity.not_after must be greater than the date
provided in the field contract.validity.not_before.

The date provided in contract.content.validity.not_after must be in the future.

At least one Grant is set in the field contract.content.grants.

A ServicePublicationGrant or DelegatedServicePublicationGrant cannot be mixed
with other Grants. Mixing Grant types with different use-cases is prohibited to prevent the creation
of Contracts that are hard to maintain and validate.

Per Grant type different validation rules apply.

The content of a ServicePublicationGrant is defined in the object
.components/schemas/grantServicePublication of the OpenAPI Specification

Validation rules:

The Peer ID provided by the X.509 certificate used by the Manager of the Directory Peer matches
the value of the field grant.data.directory.peer_id

The Peer ID provided by the X.509 certificate used by the Manager offering the Contract to the
Directory matches the value of the field grant.data.service.peer_id

A Service name which matches the regular expression ^[a-zA-Z0-9-._]{1,100}$ is provided
in the field grant.data.service.name

4.2.1 Contract Validation§

4.2.1.1 ServicePublicationGrant§

http://localhost:8080/manager.yaml

Signature requirements:

A signature is present with the Peer ID of the Peer defined in the field
grant.data.directory.peer_id

A signature is present with the Peer ID of the Peer defined in the field
grant.data.service.peer_id

The Delegatee is the Peer specified in grant.data.service.peer_id The Delegator is the Peer
specified in grant.data.delegator.peer_id

Validation rules:

The Peer ID provided by the X.509 certificate used by the Manager creating the delegation matches
the value of the field grant.data.delegator.peer_id

The Peer ID provided by the X.509 certificate used by the Manager of the Directory Peer matches
the value of the field grant.data.directory.peer_id

The Peer ID provided by the X.509 certificate used by the Manager providing the Service matches
the value of the field grant.data.service.peer_id

The validation rules of the field Service of the ServicePublicationGrant described in Core must
be applied to the field grant.data.service of the DelegatedServicePublicationGrant

Signature requirements:

A signature is present with the subject serial number of the Peer defined the field
grant.data.service.peer_id

A signature is present with the subject serial number of the Peer defined the field
grant.data.directory.peer_id

A signature is present with the subject serial number of the Peer defined the field
grant.data.delegator.peer_id

The content of a ServiceConnectionGrant is defined in the object
.components/schemas/grantServiceConnection of the OpenAPI Specification

Validation rules:

4.2.1.2 DelegatedServicePublicationGrant§

4.2.1.3 ServiceConnectionGrant§

http://localhost:8080/manager.yaml

The Peer ID provided by the X.509 certificate used by the Manager of the Peer providing the
Service matches the value of the field grant.data.service.peer_id

The Peer ID provided by the X.509 certificate used by the Manager offering the Contract to the
Service providing Peer matches the value of the field grant.data.outway.peer_id

The Service provided in the field grant.data.service.name is offered by the Peer provided in
the field grant.data.service.peer_id

A Public key fingerprint also called thumbprint is provided in the field
grant.data.outway.public_key_thumbprint

Signature requirements:

A signature is present with the Peer ID of the Peer defined in the field
grant.data.outway.peer_id

A signature is present with the Peer ID of the Peer defined in the field
grant.data.service.peer_id

The Delegatee is the Peer specified in grant.data.outway.peer_id The Delegator is the Peer
specified in grant.data.delegator.peer_id

Validation rules:

The Peer ID provided by the X.509 certificate used by the Manager of the Peer creating the
delegation matches the value of the field grant.delegator.peer_id

The Peer ID provided by the X.509 certificate used by the Manager consuming the
DelegatedServiceConnectionGrant matches with the value of the field grant.outway.peer_id

The Peer ID provided by the X.509 certificate used by the Manager of the Peer providing the
Service matches with the value of the field grant.data.service.peer_id

The validation rules of the fields Outway and Service of the ServiceConnectionGrant described
in Core must be applied to corresponding fields grant.data.outway and
grant.data.service of the DelegatedServiceConnectionGrant

In case of a Service that is published on behalf of another Peer, The Peer ID provided by the X.509
certificate used by the Manager of the Peer delegating the publication of Service matches with the
value of the field grant.data.service.delegator.peer_id

Signature requirements:

A signature is present with the subject serial number of the Peer defined the field
grant.data.outway.peer_id

4.2.1.4 DelegatedServiceConnectionGrant§

A signature is present with the subject serial number of the Peer defined the field
grant.data.delegator.peer_id

A signature is present with the subject serial number of the Peer defined the field
grant.data.service.peer_id

In case of a Service that is published on behalf of another Peer, a signature is present with the
subject serial number of the Peer defined the field grant.data.service.delegator.peer_id

A signature MUST follow the JSON Web Signature (JWS) format specified in [RFC7515]

A signature on a Contract SHOULD only be accepted if the Peer is present in one of the Grants as:

ServicePublicationGrant

grant.data.directory.peer_id

grant.data.service.peer_id

DelegatedServicePublicationGrant

grant.data.directory.peer_id

grant.data.service.peer_id

grant.data.delegator.peer_id

ServiceConnectionGrant

grant.data.outway.peer_id

grant.data.service.peer_id

grant.data.service.delegator.peer_id

DelegatedServiceConnectionGrant

grant.data.outway.peer_id

grant.data.service.peer_id

grant.data.delegator.peer_id

grant.data.service.delegator.peer_id

The JWS MUST specify the certificate thumbprint of the keypair used to create the digital signature
using the x5t#S256 section 4.1.8 of [RFC7515] field of the JOSE Header section 4 of [RFC7515].

The JWS MUST use the JWS Compact Serialization described in section 7.1 of [RFC7515]

The JWS MUST be created using one of the following digital signature algorithms:

4.2.2 Signatures§

https://www.rfc-editor.org/rfc/rfc7515#section-4.1.8
https://www.rfc-editor.org/rfc/rfc7515#section-4
https://www.rfc-editor.org/rfc/rfc7515#section-7.1

RS256

RS384

RS512

ES256

ES384

ES512

The JWS Payload as defined in section 2 of [RFC7515], MUST contain a hash of the
contract.content as described in the section Content Hash, one of the signature types described in
the signature type section and a Unix timestamp of the sign date.

JWS Payload example:

{

 "contract_content_hash": "--------",

 "type": "accept",

 "signed_at": 1672527600

}

contract_content_hash, hash of the content of the Contract.

type, type of signature.

signed_at Unix timestamp of the sign date.

accept, Peer has accepted the contract

reject, Peer has rejected the contract

revoke, Peer has revoked the contract

A Peer should ensure that a signature is intended for the Contract.
This validation is done by comparing the hash of the received Contract with the hash in the signature.
The Validation MUST be done every time a Peer receives a signature.

4.2.2.1 Payload fields§

4.2.2.2 Signature types§

4.2.3 The content hash§

https://www.rfc-editor.org/rfc/rfc7515#section-2

The contract_content_hash of the signature payload contains the signature hash. The algorithm to
create a contract_content_hash is described below. The algorithm ensures that the content hash is
unique for a specific Contract content. Because a signature contains the content hash it becomes possible
to guarantee that a signature is intended for a specific Contract.

1. Create a byte array called contentBytes.

2. Convert contract.content.group_id to bytes and append the bytes to contentBytes.

3. Append contract.content.iv to contentBytes.

4. Convert contract.content.validity.not_before to bytes and append the bytes to
contentBytes.

5. Convert contract.content.validity.not_after to bytes and append the bytes to
contentBytes.

6. Convert contract.content.created_at to bytes and append the bytes to contentBytes.

7. Create an array of byte arrays called grantByteArrays

8. For each Grant in contract.content.grants

1. Create a Grant Hash for the Grant as documented in the Grant Hash section.

2. Convert the Grant Hash from string to bytes and store them in a byte array named
grantBytes.

3. Append grantBytes to grantByteArrays.

9. Sort the byte arrays in grantByteArrays in ascending order.

10. Append the bytes of grantByteArrays to contentBytes.

11. Hash the contentBytes using the hash algorithm described in
contract.content.algorithm.

12. Encode the bytes of the hash using Base64 URL encoding with all trailing '=' characters omitted
and without the inclusion of any line breaks, whitespace, or other additional characters.

13. Convert the value of contract.content.algorithm to an int32 and surround it with dollar
signs ($). When using the SHA3-512 algorithm this would result in 1. To convert the hash
algorithm to an integer see the type mapping

14. Add 1$ as suffix to the string created in step 13. This is the enum HASH_TYPE_CONTRACT as
defined in the field .components.schemas.HashType of the OpenAPI Specification as int32. If
the string created in step 13 is 1, the result should now be $1$1$

15. Add the Base64 generated in step 12 as a suffix to the string generated in step 14.

int32: use Little-endian as endianness when converting to a byte array

4.2.3.1 Data types§

http://localhost:8080/manager.yaml

int64: use Little-endian as endianness when converting to a byte array

string: use utf-8 encoding when converting to a byte array

UUIDv7: the field contract.content.iv contains a UUIDv7 in the form of a string. The string
MUST be parsed as a UUIDv7. The bytes of the UUIDv7 are added to the byte array of the Content
or Grant hash.

The Grant hash is used in the access token request to identify the Contract and Grant which contain the
authorization for the connection to the Service. The iv (Initialization vector) field is included in the
Grant hash to create a Grant hash that references to a single Contract. The Grant hash can be created by
executing the following steps:

1. Create a byte array named grantBytes

2. Convert contract.content.group_id to bytes and append the bytes to grantBytes.

3. Convert contract.content.iv to bytes and append the bytes to grantBytes.

4. Convert the value of each field of the Grant to bytes and append the bytes to the grantBytes in
the same order as the fields are defined in the OpenAPI Specification To convert the Grant type to
an integer see the type mapping

5. Hash the grantBytes using the hash algorithm described in contract.content.algorithm

6. Encode the bytes of the hash using Base64 URL encoding with all trailing '=' characters omitted
and without the inclusion of any line breaks, whitespace, or other additional characters.

7. Convert the value of contract.content.algorithm to an int32 and enclose it with $. The
int32 value per hash algorithm type is defined in the type mapping.. E.g. The enum
HASH_ALGORITHM_SHA3_512 becomes 1.

8. Determine the HashType that matches with value of Grant.type and convert it to an int32 and
add a $ as suffix. The int32 value per hash type is defined in the type mapping. E.g. The enum
HASH_TYPE_SERVICE_PUBLICATION_GRANT becomes 2$.

9. Combine the strings containing the hash algorithm (step 6) and Hash type (step 7). E.g. The hash
algorithm HASH_ALGORITHM_SHA3_512 and Grant Type GRANT_TYPE_SERVICE_CONNECTION
should result in the string $1$2$

10. Prefix the Base64 string generated in step 5 with the string generated in step 8.

4.2.4 Grant hash§

http://localhost:8080/manager.yaml

Hash type int32 value

HASH_TYPE_CONTRACT 1

HASH_TYPE_SERVICE_PUBLICATION_GRANT 2

HASH_TYPE_SERVICE_CONNECTION_GRANT 3

HASH_TYPE_DELEGATED_SERVICE_CONNECTION_GRANT 4

HASH_TYPE_DELEGATED_SERVICE_PUBLICATION_GRANT 5

Grant type int32 value

GRANT_TYPE_SERVICE_PUBLICATION 1

GRANT_TYPE_SERVICE_CONNECTION 2

GRANT_TYPE_DELEGATED_SERVICE_CONNECTION 3

GRANT_TYPE_DELEGATED_SERVICE_PUBLICATION 4

Hash Algorithm int32 value

HASH_ALGORITHM_SHA3_512 1

Service Type int32 values

SERVICE_TYPE_SERVICE 1

SERVICE_TYPE_DELEGATED_SERVICE 2

4.2.5 Type mappings§

4.2.5.1 Hash types§

4.2.5.2 Grant types§

4.2.5.3 Hash algorithms§

4.2.5.4 Service types§

This section is non-normative.

There are two scenarios in which a certificate renewal can affect Contracts.

1. The certificate used to add an accept signature expires before the Contract expires.
In this scenario the Peer has to create a new accept signature using the new certificate and resend it
to the other Peers on the Contract. Without a valid certificate, Peers cannot verify the signature,
rendering the Contract invalid.

2. A Contract contains a ServiceConnectionGrant(s) with a thumbprint of a public key used by a
certificate that expires before the Contract expires.
In this scenario, the Peer can renew the certificate without rotating the keypair, ensuring that the
public key thumbprint remains unchanged. As a result, the Contract remains unaffected. However,
if the keypair is rotated, the public key thumbprint will change and the Outway can no longer use
the ServiceConnectionGrant to connect to the Service. As a result, a new Contract will need to be
created containing a ServiceConnectionGrant with the new public key thumbprint.

The access token is a JSON Web Token (JWT) as specified in [RFC7519]

The JWT MUST specify the thumbprint of the X.509 certificate used to sign the JWT using the
x5t#S256 section 4.1.8 of [RFC7515] field of the JOSE Header section 4 of [RFC7515].

The JWT MUST be created using one of the following digital signature algorithms:

RS256

RS384

RS512

ES256

ES384

ES512

The access token is a certificate-bound access token as specified in section 3 of [RFC8705]

4.2.6 Certificate renewal§

4.3 Access token§

https://www.rfc-editor.org/rfc/rfc7515#section-4.1.8
https://www.rfc-editor.org/rfc/rfc7515#section-4
https://www.rfc-editor.org/rfc/rfc8705#section-3

The payload of the JWT:

gth(string):
The hash of the Grant that serves as basis for the authorization

gid(string): The ID of the Group

sub(string): The subject section 4.1.2 of [RFC7519]. This should be the ID of the Peer for whom
the token is intended

iss(string): The issuer section 4.1.1 of [RFC7519]. The ID of the Peer who issued the token. I.e. the
Peer who is offering the Service

svc(string): Name of the Service

aud(string): The audience section 4.1.3 of [RFC7519]. This should be URI [RFC3986] of the
Inway providing the Service. The URI is a URL that MUST contain the scheme and port number
used by the Inway

exp(int): Expiration time section 4.1.4 of [RFC7519]

nbf(int): Not before section 4.1.5 of [RFC7519]

cnf(object):

x5t#S256(string): The thumbprint of the certificate that is allowed to use the access token.
[section 3.1] of [RFC8705]

act(object):

sub(string): The ID of the Peer connecting to the Service on behalf of another Peer. The field
grant.data.delegator.peer_ID of the DelegatedServiceConnectionGrant.

pdi(string): The ID of the Peer delegating the publication of the Service to another Peer. The field
grant.data.service.delegator.peer_ID of the ServiceConnectionGrant or
DelegatedServiceConnectionGrant.

add(object): An object which can be used to provide additional data

Example payload of a JWT for a Peer (sub: 1234567890) connecting to a Service (svc:
serviceName) offered by a Peer(iss: 1234567891):

{

 "gth": "$1$4$+PQI7we01qIfEwq4O5UioLKzjGBgRva6F5+bUfDlKxUjcY5yX1MRsn6NKquD

 "gid": "fsc.group.example.id",

 "sub": "1234567890",

 "iss": "1234567891",

 "svc": "serviceName",

 "aud": "https://inway.com",

 "exp": 1493726400,

4.3.1 JWT Payload§

https://www.rfc-editor.org/rfc/rfc7519#section-4.1.2
https://www.rfc-editor.org/rfc/rfc7519#section-4.1.1
https://www.rfc-editor.org/rfc/rfc7519#section-4.1.3
https://www.rfc-editor.org/rfc/rfc7519#section-4.1.4
https://www.rfc-editor.org/rfc/rfc7519#section-4.1.5

 "nbf": 1493722800,

 "cnf": {

 "x5t#S256": "DpAyDYakmVAQ4oOJC3UYLRk/ONRCqMj00TeGJemMiLA"

 },

 "add": {}

}

Example payload of a connection of a Peer (sub: 1234567890) to a Service (svc: serviceName)
offered by a Peer (iss: 1234567891) on behalf of another Peer(pdi: 1234567892):

{

 "gth": "$1$4$+PQI7we01qIfEwq4O5UioLKzjGBgRva6F5+bUfDlKxUjcY5yX1MRsn6NKquD

 "gid": "fsc.group.example.id",

 "sub": "1234567890",

 "iss": "1234567891",

 "pdi": "1234567892",

 "svc": "serviceName",

 "aud": "https://inway.com",

 "exp": 1493726400,

 "nbf": 1493722800,

 "cnf": {

 "x5t#S256": "DpAyDYakmVAQ4oOJC3UYLRk/ONRCqMj00TeGJemMiLA"

 },

 "add": {}

}

Example payload for a JWT of a Peer (act.sub: 1234567892) who is connecting on behalf of Peer
(sub: 1234567890) to a Service (svc: serviceName) offered by a Peer (iss: 1234567891):

{

 "gth": "$1$4$+PQI7we01qIfEwq4O5UioLKzjGBgRva6F5+bUfDlKxUjcY5yX1MRsn6NKquD

 "gid": "fsc.group.example.id",

 "sub": "1234567890",

 "iss": "1234567891",

 "svc": "serviceName",

 "aud": "https://inway.com",

 "exp": 1493726400,

 "nbf": 1493722800,

 "act": {

 "sub": "1234567892"

 },

 "cnf": {

 "x5t#S256": "DpAyDYakmVAQ4oOJC3UYLRk/ONRCqMj00TeGJemMiLA"

 },

 "add": {}

}

The Manager is an essential component for each Peer in the Group. The Manager is responsible for:

Receiving Contracts

Validating Contracts

Receiving Contract signatures (accept, reject, revoke)

Validating Contract signatures

Providing the X.509 certificates of the keypair of which the private key was used by the Peer to
create signatures

Providing Contracts involving a specific Peer

Providing access tokens

Listing Peers

Listing Services

It is RECOMMENDED to implement the Manager functionality separate from the Inway functionality,
in order to be able to have multiple Inways that are configured by one Manager.

The Manager MUST only accept mTLS connections from other external Managers with an X.509
certificate that is signed by the TA of the Group.

The Manager MUST support Contracts containing Grants of the type ServicePublicationGrant and
ServiceConnectionGrant.

The Manager MUST validate Contracts using the rules described in Contract validation section

The Manager MUST persist the Peer ID, name and Manager address of each Peer with whom the Peer
has negotiated Contracts.

4.4 Manager§

4.4.1 Behavior§

4.4.1.1 Authentication§

4.4.1.2 Contracts§

It is RECOMMENDED to implement a retry and backoff mechanism in case the Contract propagation
fails.

The Manager MUST validate the signature according to the rules described in the signature section.

The Manager MUST generate an error response if a signature is invalid.

The Manager MUST propagate the signature to each of the Peers in the Contract when the Peer signs the
Contract.

It is RECOMMENDED to implement a retry and backoff mechanism in case the signature propagation
fails.

The Manager MUST provide X.509 certificates of the keypairs used to sign Contracts and access tokens.

The Manager MUST provide the complete certificate chain excluding the root CA certificate used by the
Group as Trust Anchor.

The Manager MUST provide existing Contracts for a specific Peer. A Contract SHOULD only be
provided to a Peer if the Peer is present in one of the Grants of the Contract.

The Manager MUST be able to provide an access token to Peers that have a valid Contract containing a
ServiceConnectionGrant or DelegatedServiceConnectionGrant.

Before issuing an access token the Manager MUST validate that:

1. The scope provided in the token request contains a Grant hash that matches with a
ServiceConnectionGrant or DelegatedServiceConnectionGrant of a valid Contract.

4.4.1.3 Signatures§

4.4.1.4 Providing X.509 certificates§

4.4.1.5 Providing contracts§

4.4.1.6 Tokens§

2. The client_id provided in the token request contains a PeerID that matches with the PeerID
specified in the X.509 certificate of the client requesting the access token and later using the access
token to make an API request.

3. The Manager is provided by a Peer with the same PeerID as specified in
grant.data.service.peer_id.

4. The Manager is provided by a Peer who has an Inway which is offering the Service specified in
grant.data.service.name.

5. The Peer ID specified by the X.509 certificate of the client requesting the access token matches the
value of the field grant.data.outway.peer_id.

6. The X.509 certificate provided by the client contains the same public key as specified in
grant.data.outway.public_key_fingerprint

The cnf.x5t#S256 claim MUST contain the certificate thumbprint of the X.509 certificate provided by
the client requesting the token according to [section 3.1] of [RFC8705]. The act claim MUST be set
when an access token is generated for a Peer who is connecting to the Service on behalf of another Peer.
I.e. the authorization to connect has been granted using a DelegatedServiceConnectionGrant. The pdi
claim MUST be set when an access token is generated for a Service which is being offered on behalf of
another Peer.

The Manager MUST include the address of the Inway in the field aud of the access token.

The name of a Service MUST be unique within the scope of a Peer.

The Peer is responsible for checking the uniqueness of a Service name.

The Manager MUST list a Service when a valid Contract containing a ServicePublicationGrant or
DelegatedServicePublicationGrant for the Service exists.

The Manager MUST list the Peers with whom the Peer has negotiated Contracts or who announced
themselves to the Peer.

4.4.1.7 Services§

4.4.1.8 Service listing§

4.4.1.9 Peer listing§

The Manager MUST persist the Peer ID, name and Manager address of each Peer with whom the Peer
has negotiated Contracts.

The Manager MUST persist the Peer ID, name and Manager address of each Peer who called the
announce endpoint as specified in the OpenAPI Specification.

The announce is used to share the Manager address and Peer information among Peers. The
announce is also used by the Directory to obtain the Manager addresses of all Peers in the Group.
Each Peer MUST call the announce endpoint of a Directory to register themselves as participant of the
Group.

In addition to announcing to the Directory a Manager SHOULD call the announce endpoint of the
Peers with whom the Peer has negotiated Contracts when the address of Manager changes.

The Manager functionality MUST implement an HTTP interface as specified in the OpenAPI
Specification.

The Manager is required to include its public address as HTTP Header Fsc-Manager-Address in each
POST or PUT request sent to another Manager.

The Manager implements two error formats

The /token endpoint MUST return an error response as described in section 5,2 of [RFC6749].

4.4.2 Announce§

4.4.3 Interfaces§

4.4.4 FSC manager address§

4.4.5 Error response§

4.4.5.1 OAuth 2.0 error response§

http://localhost:8080/manager.yaml
http://localhost:8080/manager.yaml
http://localhost:8080/manager.yaml
https://www.rfc-editor.org/rfc/rfc6749#section-5.2

The Manager MUST return the error response object as described in .components/schemas/error
of the OpenAPI Specification.

The code field of the error response MUST contain one of the codes defined as
.components.schemas.ManagerErrorCode in the OpenAPI Specification.

The domain field of the error response MUST be equal to ERROR_DOMAIN_MANAGER.

Error code
HTTP
status
code

Description

ERROR_CODE_INCORRECT_GROUP_ID 422

The Group
ID in the
Contract
does not
match the
GroupID of
the
receiving
Manager

ERROR_CODE_PEER_NOT_PART_OF_CONTRACT 422

The Peer
tried to
submit or
sign a
Contract
without
being a Peer
on the
Contract

ERROR_CODE_SIGNATURE_CONTRACT_CONTENT_HASH_MISMATCH 422 The Peer
tried to
submit a
signature
with a
Contract
content
hash that

4.4.5.2 Other endpoints§

4.4.5.3 Codes§

http://localhost:8080/manager.yaml
http://localhost:8080/manager.yaml

Error code
HTTP
status
code

Description

does not
match the
Contract

ERROR_CODE_PEER_CERTIFICATE_VERIFICATION_FAILED 400

The Peer
provided a
x.509
certificate
signed by
the trust
anchor of
the Group
but the
content is
invalid. E.g
the Peer ID
is in a
incorrect
format

ERROR_CODE_PEER_ID_SIGNATURE_MISMATCH 422

The Peer
submitted a
signature
that
includes a
Peer ID that
does not
match the
ID of the
submitting
Peer

ERROR_CODE_SIGNATURE_VERIFICATION_FAILED 422

The Peer
submitted a
signature
that could
not be
verified

ERROR_CODE_GRANT_COMBINATION_NOT_ALLOWED 422 The Peer
submitted a
Contract
with a

Error code
HTTP
status
code

Description

combination
of Grants
that is not
allowed

ERROR_CODE_URL_PATH_CONTENT_HASH_MISMATCH 422

The Content
Hash in the
URL path
does not
match the
Content
Hash
generated
from the
Contract
Content in
the request
body

ERROR_CODE_UNKNOWN_HASH_ALGORITHM_HASH 422

The Hash
Algorithm
in the
Contract
Content
hash or
Grant Hash
is not
supported

ERROR_CODE_UNKNOWN_ALGORITHM_SIGNATURE 422

The
Algorithm
in the
Signature is
not
supported

The Directory is a Manager chosen by the Group to act as a Directory.

The Directory is used by Peers to:

4.5 Directory§

Discover Services

Discover Peers

Publish Services

Register themselves

Service publication is accomplished by offering a Contract to the Directory which contains one or more
ServicePublicationGrants with each ServicePublicationGrant containing a single Service. Once the
Directory and the Peer offering the Service have both signed the Contract, the Service is published in the
Directory.

The Directory MUST be able to sign Contracts with Grants of the type ServicePublicationGrant.

The Directory MUST validate the ServicePublicationGrant in the Contract using the rules described in
ServicePublicationGrant section

Although multiple ServicePublicationGrants are allowed in a single Contract it is RECOMMENDED to
limit this to one per Contract. Adding multiple ServicePublicationGrants on a single Contract makes the
Contract fragile. If the publication of one Service changes the whole Contract will be invalidated.

The Outway is used by Peers to connect to a Service.
The Outway functions as a forwarding proxy that is responsible for setting up the connection to the
Inway that is offering a Service.

The Outway is responsible for:

setting up mTLS connections with Inways

including a valid access token with each request

deliver the response from the Service to the client calling the Outway

4.5.1 Behavior§

4.5.1.1 Service publication§

4.6 Outway§

4.6.1 Behavior§

The Outway MUST use mTLS when connecting to Inways with an X.509 certificate signed by the
chosen TA of the Group.

The Outway MUST proxy the request to the address of the Inway specified in the field aud of the access
token.

The Outway MUST use an access token provided by the Peer specified in the
grant.data.service.peer_id field of the ServiceConnectionGrant.

The Outway MUST include an access token in the HTTP header Fsc-Authorization when proxying
the HTTP request to the Inway.

The Outway MUST validate that the Group ID specified in the claim gid of the access token matches
the Group ID of the Outway.

The Outway MUST NOT alter the path of the HTTP Request.

Clients MAY use TLS when communicating with the Outway.

Access tokens are obtained using the Client Credentials flow section 4,4 of [RFC6749]. Access tokens
MUST be obtained by calling the /token endpoint defined in the OpenAPI Specification.

To request a token via the Client Credentials flow the following information must be sent to the
Manager which acts as an Authorization Server:

GrantHash of a Service Connection grant or Delegated Service Connection grant
provided in the scope field.

PeerID of the Peer making the request in the client_id field

client_credentials in the grant_type field.

The GrantHash provided in the request to the Manager acts as a reference to a Grant on a Contract.
The Manager (Authorization Server) will perform the verification steps defined in the token section
before providing an access token.

4.6.1.1 Authentication§

4.6.1.2 Routing§

4.6.1.3 Obtaining access tokens§

https://www.rfc-editor.org/rfc/rfc6749#section-4.4
http://localhost:8080/manager.yaml

The component retrieving the access token MUST use mTLS to authenticate with the Authorization
server (Manager) as defined in section 2.1 of [RFC8705]. The component retrieving the access token
MUST use an X.509 certificate signed by the chosen TA of the Group. The Manager MUST verify this
client certificate and issue a token bound to this client certificate according to section 3.

Obtaining an Access Token

Service Consumer Service Provider

Outway Manager

1 request Access token

2 validate identity "Service Consumer"

3 validate Contract Grant hash

4 Access Token bound to client certificate "Outway"

Core

Figure 10 Obtaining an Access Token

Which component obtains an access token for a Service is an implementation detail and out of scope for
this document.

If the Error has occurred in the Inway or Service the Outway MUST return the error without altering the
response.

The Outway MUST return an error response defined in the Error handling section when the error is
produced by the Outway.

The code field of the error response MUST contain one of the codes defined as
.components.schemas.OutwayErrorCode in the OpenAPI Specification.

The domain field of the error response MUST be equal to ERROR_DOMAIN_OUTWAY.

Error code
HTTP
status
code

Description

ERROR_CODE_METHOD_UNSUPPORTED 405 The Outway received a request with an
HTTP Method that is not supported.

4.6.1.4 Error response§

4.6.1.4.1 Codes§

https://datatracker.ietf.org/doc/html/rfc8705#section-2.1
https://www.rfc-editor.org/rfc/rfc8705#section-3
http://localhost:8080/manager.yaml

Error code
HTTP
status
code

Description

The CONNECT method is not
supported.

The Inway is used by Peers to offer a Service to other Peers.
The Inway is a Reverse proxy that handles incoming connections from Outways and routes the request
to the correct Service.

The Inway is responsible for:

validating access tokens.

routing requests to the correct Service.

forwarding the access token to the Service which is being called.

returning the response from the Service to the Outway.

The Inway MUST only accept connections from Outways using mTLS with an X.509 certificate signed
by the chosen TA of the Group.

The Inway MUST validate the access token provided in the HTTP Fsc-Authorization.

The request MUST be authorized if the access token meets the following conditions:

The access token is signed by the same Peer that owns Inway.

The access token is used by an Outway that uses the X.509 certificate to which the access token is
bound. This is verified by applying the JWT Certificate Thumbprint Confirmation Method

4.7 Inway§

4.7.1 Behavior§

4.7.1.1 Authentication§

4.7.1.2 Authorization§

specified in section 3.1 of [RFC8705].

The Service specified in the access token is known to the Inway.

The Group ID specified in the claim gid of the access token matches the Group ID of the Inway.

The HTTP request MUST contain the HTTP Header Fsc-Authorization which contains the access
token obtained by the Outway.

The Inway MUST proxy the HTTP request to the Service specified in the field svc of the access token.

The Inway MUST not delete the HTTP Header Fsc-Authorization from the HTTP Request before
forwarding the request to the Service.

The security of the connection between the Inway and the Service is out of scope for this document.

The HTTP endpoint / MUST be implemented.

The Inway MUST return the error response of a Service to the Outway without altering the response.

The Inway MUST return an error response defined in the Error handling section when the error is
produced by the Inway.

The code field of the error response MUST contain one of the codes defined as
.components.schemas.InwayErrorCode in the OpenAPI Specification.

The domain field of the error response MUST be equal to ERROR_DOMAIN_INWAY.

4.7.1.3 Routing§

4.7.2 Interfaces§

4.7.2.1 Proxy Endpoint§

4.7.2.2 Error response§

https://datatracker.ietf.org/doc/html/rfc8705#section-3.1
http://localhost:8080/manager.yaml

Error code
HTTP
status
code

Description

ERROR_CODE_ACCESS_TOKEN_MISSING 401

The HTTP header Fsc-
Authorization does not
contain an access token. In this
scenario the HTTP header WWW-
Authenticate MUST be set to
Bearer

ERROR_CODE_ACCESS_TOKEN_INVALID 401

The provided access token is
invalid. In this scenario the HTTP
header WWW-Authenticate
MUST be set to Bearer

ERROR_CODE_ACCESS_TOKEN_EXPIRED 401

The provided access token has
expired. In this scenario the HTTP
header WWW-Authenticate
MUST be set to Bearer

ERROR_CODE_WRONG_GROUP_ID_IN_TOKEN 403
The Group ID specified in the
access token does not match the
ID of the Group of the Inway

ERROR_CODE_SERVICE_NOT_FOUND 404
The Service specified in the
access token is not offered by the
Inway

ERROR_CODE_SERVICE_UNREACHABLE 502
The Inway is unable to reach the
Service

OpenAPI Specification

As well as sections marked as non-normative, all authoring guidelines, diagrams, examples, and notes in
this specification are non-normative. Everything else in this specification is normative.

4.7.2.2.1 Codes§

4.8 References§

5. Conformance§

http://localhost:8080/manager.yaml

The key words MAY, MUST, MUST NOT, RECOMMENDED, and SHOULD in this document are to be
interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
capitals, as shown here.

Figure 1 mTLS Connections

Figure 2 Contract Management

Figure 3 State Contract

Figure 4 Providing a Service

Figure 5 Connecting to a Service

Figure 6 Connecting to a Service that is offered on behalf of another Peer

Figure 7 Delegate a connection to a Service

Figure 8 Delegate a connection to a Service that is offered on behalf of another Peer

Figure 9 Consuming a Service

Figure 10 Obtaining an Access Token

[RFC2119]
Key words for use in RFCs to Indicate Requirement Levels. S. Bradner. IETF. March 1997. Best
Current Practice. URL: https://www.rfc-editor.org/rfc/rfc2119

[RFC3986]
Uniform Resource Identifier (URI): Generic Syntax. T. Berners-Lee; R. Fielding; L. Masinter.
IETF. January 2005. Internet Standard. URL: https://www.rfc-editor.org/rfc/rfc3986

[RFC5279]
A Uniform Resource Name (URN) Namespace for the 3rd Generation Partnership Project (3GPP).
A. Monrad; S. Loreto. IETF. July 2008. Informational. URL: https://www.rfc-editor.org/rfc/rfc5279

[RFC5280]
Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile.
D. Cooper; S. Santesson; S. Farrell; S. Boeyen; R. Housley; W. Polk. IETF. May 2008. Proposed
Standard. URL: https://www.rfc-editor.org/rfc/rfc5280

6. List of Figures§

A. References§

A.1 Normative references§

https://www.rfc-editor.org/info/bcp14
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc3986
https://www.rfc-editor.org/rfc/rfc3986
https://www.rfc-editor.org/rfc/rfc5279
https://www.rfc-editor.org/rfc/rfc5279
https://www.rfc-editor.org/rfc/rfc5280
https://www.rfc-editor.org/rfc/rfc5280

[RFC6125]
Representation and Verification of Domain-Based Application Service Identity within Internet
Public Key Infrastructure Using X.509 (PKIX) Certificates in the Context of Transport Layer
Security (TLS). P. Saint-Andre; J. Hodges. IETF. March 2011. Proposed Standard. URL:
https://www.rfc-editor.org/rfc/rfc6125

[RFC6749]
The OAuth 2.0 Authorization Framework. D. Hardt, Ed. IETF. October 2012. Proposed Standard.
URL: https://www.rfc-editor.org/rfc/rfc6749

[RFC7515]
JSON Web Signature (JWS). M. Jones; J. Bradley; N. Sakimura. IETF. May 2015. Proposed
Standard. URL: https://www.rfc-editor.org/rfc/rfc7515

[RFC7519]
JSON Web Token (JWT). M. Jones; J. Bradley; N. Sakimura. IETF. May 2015. Proposed Standard.
URL: https://www.rfc-editor.org/rfc/rfc7519

[RFC8174]
Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words. B. Leiba. IETF. May 2017. Best
Current Practice. URL: https://www.rfc-editor.org/rfc/rfc8174

[RFC8705]
OAuth 2.0 Mutual-TLS Client Authentication and Certificate-Bound Access Tokens. B. Campbell; J.
Bradley; N. Sakimura; T. Lodderstedt. IETF. February 2020. Proposed Standard. URL:
https://www.rfc-editor.org/rfc/rfc8705

[RFC9112]
HTTP/1.1. R. Fielding, Ed.; M. Nottingham, Ed.; J. Reschke, Ed. IETF. June 2022. Internet
Standard. URL: https://httpwg.org/specs/rfc9112.html

[RFC9113]
HTTP/2. M. Thomson, Ed.; C. Benfield, Ed. IETF. June 2022. Proposed Standard. URL:
https://httpwg.org/specs/rfc9113.html

↑

https://www.rfc-editor.org/rfc/rfc6125
https://www.rfc-editor.org/rfc/rfc6125
https://www.rfc-editor.org/rfc/rfc6125
https://www.rfc-editor.org/rfc/rfc6125
https://www.rfc-editor.org/rfc/rfc6749
https://www.rfc-editor.org/rfc/rfc6749
https://www.rfc-editor.org/rfc/rfc7515
https://www.rfc-editor.org/rfc/rfc7515
https://www.rfc-editor.org/rfc/rfc7519
https://www.rfc-editor.org/rfc/rfc7519
https://www.rfc-editor.org/rfc/rfc8174
https://www.rfc-editor.org/rfc/rfc8174
https://www.rfc-editor.org/rfc/rfc8705
https://www.rfc-editor.org/rfc/rfc8705
https://httpwg.org/specs/rfc9112.html
https://httpwg.org/specs/rfc9112.html
https://httpwg.org/specs/rfc9113.html
https://httpwg.org/specs/rfc9113.html

