NLGov Profile for OpenID AuthZEN
Authorization API

Logius Standard
Draft October 21, 2025

=
(4]
T
a
1
=)
T
[~}
=)
=)
T
+=
9]
wn
3
o
o0
@]
—

This version:
https://logius-standaarden.github.io/authzen-nlgov/

Latest published version:
https://logius-standaarden.github.io/logboek-dataverwerkingen/

Latest editor's draft:
https://logius-standaarden.github.io/authzen-nlgov/

Editors:
Stas Mironov (Logius)
Alexander Green (Logius)

Author:
Michiel Trimpe (VNG Realisatie)

Participate:
GitHub Logius-standaarden/authzen-nlgov

File an issue

Commit history
Pull requests

This document is also available in these non-normative format: PDF

@ @ This document is licensed under
Creative Commons Attribution 4.0 International Public License

Status of This Document

This is a draft that could be altered, removed or replaced by other documents. It is not a

recommendation approved by TO.

Table of Contents

Status of This Document

Conformance

https://www.logius.nl/onze-dienstverlening/standaarden
https://logius-standaarden.github.io/authzen-nlgov/
https://logius-standaarden.github.io/logboek-dataverwerkingen/
https://logius-standaarden.github.io/authzen-nlgov/
https://www.logius.nl/
https://www.logius.nl/
https://vng.nl/artikelen/vng-realisatie
https://github.com/Logius-standaarden/authzen-nlgov/
https://github.com/Logius-standaarden/authzen-nlgov/issues/
https://github.com/Logius-standaarden/authzen-nlgov/commits/
https://github.com/Logius-standaarden/authzen-nlgov/pulls/
http://localhost:8080/api-authzen-1.0.0.pdf
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode

Abstract

Dutch government profile for OpenID AuthZEN Authorization API

1. Introduction

2. Model

3. Features

4. API Version

5. Information Model

5.1 Subject

5.1.1 Subject Properties

5.1.2 Examples (non-normative)

5.2 Resource

5.2.1 Resource Properties

5.2.2 Examples (non-normative)

5.3 Action

5.3.1 Action Properties

5.3.1.1 Processing Activity identifier
5.3.1.2 Algorithm identifier

5.3.2 Examples (non-normative)

5.4 Context

5.4.1 Context Properties

5.4.1.1 Time

5.4.1.2 W3C Trace Context

5.4.1.3 Verifiable claims

5.4.1.4 Meta-information Model
5.4.1.5 Linked Data context

5.4.2 Examples (non-normative)

5.5 Decision

5.5.1 Decision Context

5.5.2 Examples (non-normative)

5.5.2.1 Non-normative Example 1: conveying decision Reasons
5.5.2.2 Non-normative Example 2: conveying metadata and environmental elements
5.5.2.3 Non-normative Example 3: requesting step-up authentication
6. Access Evaluation API

6.1 The Access Evaluation API Request
6.1.1 Example (non-normative)

6.2 The Access Evaluation API Response

7.1
7.1.1

7.1.2
7.1.2.1

7.1.2.1.1
7.2
7.2.1

8.1
8.2
8.2.1
8.2.2
8.2.3
8.3
8.4
8.4.1
8.4.2
8.5
8.5.1
8.5.2
8.6
8.6.1
8.6.2

9.1

9.1.1
9.1.2
9.1.3
9.2

9.2.1
9.2.2
9.2.3

10.
10.1
10.1.1
10.1.2
10.1.3
10.1.4

Access Evaluations API
The Access Evaluations API Request
Default values
Evaluations options
Evaluations semantics
Example: Evaluate read action for three documents using all three semantics
The Access Evaluations API Response

Errors

Search APIs
Semantics
Pagination
Paginated Requests
Paginated Responses
Examples (non-normative)
The Search API Response
Subject Search API
The Subject Search API Request
Example (non-normative) {#subject-search-example"}
Resource Search API
The Resource Search API Request
Example (non-normative) {#resource-search-example"}
Action Search API
The Action Search API Request

Example (non-normative) {#action-search-example"}

Policy Decision Point Metadata

Data structure
Endpoint Parameters
Capabilities Parameters
Signature Parameter

Obtaining Policy Decision Point Metadata
Policy Decision Point Metadata Request
Policy Decision Point Metadata Response

Policy Decision Point Metadata Validation

Transport

HTTPS JSON Binding
JSON Serialization
Error Responses
Request Identification

Examples (non-normative)

11. Security Considerations

11.1 Communication Integrity and Confidentiality

11.2 Policy Confidentiality and Sender Authentication
11.3 Sender Authentication Failure

114 Trust

11.5 JSON Payload Considerations

11.6 Authorization Response Integrity

11.7 Availability & Denial of Service {#security-avail-dos}}
11.8 Differences between Unsigned and Signed Metadata
11.9 Metadata Caching

12. IANA Considerations

12.1 AuthZEN Policy Decision Point Metadata Registry
12.1.1 Registry Definition

12.1.2 Registration Template

12.1.3 Initial Registrations

12.2 Well-Known URI Registry

12.2.1 Registry Contents

12.3 AuthZEN Policy Decision Point Capabilities Registry
12.3.1 Registry Definition

12.3.2 Registration Template

12.4 Registration of "authzen" URN Sub-namespace

A. Terminology

B. Acknowledgements

C. Index

C.1 Terms defined by this specification

C.2 Terms defined by reference

D. References

D.1 Normative references

D.2 Informative references

Conformance

As well as sections marked as non-normative, all authoring guidelines, diagrams, examples, and notes

in this specification are non-normative. Everything else in this specification is normative.

The key words MAY, MUST, MUST NOT, OPTIONAL, RECOMMENDED, REQUIRED, SHOULD,
and SHOULD NOT in this document are to be interpreted as described in BCP 14 [RFC2119]
[RFC8174] when, and only when, they appear in all capitals, as shown here.

Abstract

The Authorization API enables Policy Decision Points (PDPs) and Policy Enforcement Points (PEPs)
to communicate authorization requests and decisions to each other without requiring knowledge of
each other's inner workings. The Authorization API is served by the PDP and is called by the PEP. The
Authorization API includes evaluation endpoints, which provide specific access decisions, and search

endpoints for discovering permissible subjects, resources, or actions.

This document is an adaptation of the 'OpenID AuthZEN Authorization API 1.0 — draft 04’

(hereinafter: AuthZEN) of the OpenID Foundation. This does not indicate an endorsement by the
OpenID Foundation. In as far as AuthZEN is incorporated in this document, the OpenlD Copyright

License applies.

Dutch government profile for OpenID AuthZEN Authorization API

This profile is based upon the AuthZEN Authorization API as published by the OpenID Foundation. It

should be considered a fork of this standard geared more towards the Netherlands and operating

within the context of the European Union.

Starting with chapter Introduction we follow the structure of the AuthZEN Authorization API. Content
introduced by the NLGov profile is marked in green. Content from the AuthZEN Authorization API
that is not used in the NLGov profile is marked ged.

1. Introduction

Computational services often implement access control within their components by separating Policy
Decision Points (PDPs) from Policy Enforcement Points (PEPs). PDPs and PEPs are defined in
XACML ([XACML20]) and NIST's ABAC SP 800-162 ([NIST.SP.800-162]). Communication between
PDPs and PEPs follows similar patterns across different software and services that require or provide
authorization information. The Authorization API described in this document enables different
providers to offer PDP and PEP capabilities without having to bind themselves to one particular

implementation of a PDP or PEP.

https://www.rfc-editor.org/info/bcp14
https://openid.net/specs/authorization-api-1_0-04.html
https://openid.net/specs/authorization-api-1_0-04.html
https://openid.net/intellectual-property/contribution-license-agreement/
https://openid.net/intellectual-property/contribution-license-agreement/
https://openid.net/wg/authzen/specifications/
https://openid.net/

2. Model

By convention, we refer to a service that implements this API as a Policy Decision Point, or PDP. The
policy language, architecture, and state management aspects of a PDP are beyond the scope of this
specification.

By convention, we refer to a client of the Authorization API as a Policy Enforcement Point, or PEP.
Clients may consume the Authorization API for use cases that go beyond enforcement of authorization

decisions; for example, the Resource Search API (8.5 Resource Search API) allows a caller to

discover the resources on which a subject can perform an action. For consistency, we use the term PEP

to describe a client of the API, regardless of the use case.

The Authorization API is defined in a transport-agnostic manner. A normative HTTPS binding is
described in Transport (10. Transport). Other bindings, such as gRPC, may be defined in other profiles

of this specification.

Authentication for the Authorization API itself is out of scope for this document, since authentication
for APIs is well-documented elsewhere. Support for OAuth 2.0 ([RFC6749]) is RECOMMENDED.

3. Features

The core feature of the Authorization API is the Access Evaluation API (6. Access Evaluation API),

which enables a PEP to determine whether a specific request can be permitted to access a specific

resource. The following are non-normative examples:

e Can Alice view document #1237
e Can Alice view document #123 at 16:30 on Tuesday, June 11, 2024?

e (Can a manager print?

The Access Evaluations API (7. Access Evaluations API) enables execution of multiple evaluations in

a single request. The following are non-normative examples:

e Can Alice view documents 123, 234 and 345 on Tuesday, June 11, 2024?

e Can document 123 be viewed by Alice and Bob?

The Search APIs (8. Search APIs) provide lists of resources, subjects or actions that would be allowed
access. The following are non-normative examples:

e Which documents can Alice view?

e Who can view document 1237

e What actions can Alice perform on document 123 on Tuesday, June 11, 2024?

4. API Version

This document describes the API version 1.0. Any updates to this API through subsequent revisions of
this document or other documents MAY augment this API, but MUST NOT modify the API described
here. Augmentation MAY include additional API methods or additional parameters to existing API
methods, additional authorization mechanisms, or additional optional headers in HTTPS transport
bindings. Endpoints for version 1.0 SHOULD include v1 in the endpoint identifier (e.g.
https://pdp.example.com/access/vl1/).

5. Information Model

The information model for requests and responses include the following entities: Subject, Action,

Resource, Context, and Decision. These are all defined below.

Specific implementations of the generic AuthZEN information model SHOULD be documented in a
meta-information model. This enables an unambigous interpretation of the meaning of requests. It is
RECOMMENDED to document to the meta-information model using [MIM].

It is RECOMMENDED to use [JSON-LD11] to enable automatic integration into existing semantic

models, as described in 5.4.1.4 Meta-information Model.

5.1 Subject

A Subject is the user or machine principal about whom the Authorization API is being invoked. The
Subject may be requesting access at the time the Authorization API is invoked.

A Subject is an object that contains two REQUIRED keys, type and id, which have a string value,
and an OPTIONAL key, properties, with a value of an object.

type: : REQUIRED. A string value that specifies the type of the Subject. It is RECOMMENDED to
define the type as a Linked Data URI.

id: : REQUIRED. A string value containing the unique identifier of the Subject, scoped to the type.

properties: : OPTIONAL. An object which can be used to express additional attributes of a Subject.

§ 5.1.1 Subject Properties

Many authorization systems are stateless, and expect the PEP to pass in all relevant attributes used in
the evaluation of the authorization policy. To satisfy this requirement, Subjects MAY include additional
attributes as key-value pairs, under the properties object. A property can contain both simple

values, such as strings, numbers, booleans and nulls, and complex values, such as arrays and objects.

Examples of subject attributes can include, but are not limited to:

department,

group memberships,

device identifier,

IP address.

§ 5.1.2 Examples (non-normative)

The following is a non-normative example of a minimal Subject:

EXAMPLE 1: Example Subject

Iltypell: Iluserll)
"id": "alice@example.com"

The following is a non-normative example of a Subject which adds a string-valued department

property:

EXAMPLE 2: Example Subject with Additional Property

{
“type": "user",
"id": "alice@example.com",
"properties": {
"department": "Sales"
}

The following is a non-normative example of a subject which adds IP address and device identifier

properties:

EXAMPLE 3: Example Subject with IP Address and Device ID

{
“type": "user",
"id": "alice@example.com",
"properties": {
"ip address": "172.217.22.14",
"device id": "8:65:ee:17:7e:0b"
}
}

5.2 Resource
A Resource is the target of an access request. It is an object that is constructed similar to a Subject
entity. It has the following keys:

type: : REQUIRED. A string value that specifies the type of the Resource. It is RECOMMENDED to
define the type as a Linked Data URI.

id: : REQUIRED. A string value containing the unique identifier of the Resource, scoped to the type.

properties: : OPTIONAL. An object which can be used to express additional attributes of a
Resource.

5.2.1 Resource Properties

Similarly to the Subject properties, the PEP can also provide attributes for the Resource in the
properties field.

Such attributes can include, but are not limited to, attributes of the resource used in access evaluations

or metadata about the resource.

5.2.2 Examples (non-normative)

The following is a non-normative example of a Resource with a type and a simple id:

EXAMPLE 4: Example Resource

lltypell: “bOOk",
“id“: ||123||

The following is a non-normative example of a Resource containing a Library record property,
that is itself an object:

EXAMPLE 5: Example Resource with Additional Property

“type": "book",
"id": "123",
"properties": {
“library record":{
"title": "AuthZEN in Action",
"isbn": "978-0593383322"

5.3 Action

An Action is the type of access that the requester intends to perform.

Action is an object that contains a REQUIRED name key with a string value, and an OPTIONAL
properties key with an object value.

name: : REQUIRED. A string value containing the name of the Action.

properties: : OPTIONAL. An object which can be used to express additional attributes of an

Action.

5.3.1 Action Properties

Similarly to the Subject and Resource properties, the PEP can also provide attributes for the Action in
the properties field.

Such attributes can include, but are not limited to, parameters of the action that is being requested.

To increase interoperability, a few common properties are specified below:

5.3.1.1 Processing Activity identifier

Under Dutch and EU legislation, processing of personal data should be described in a Record of
Processing Activities. In certain cases, e.g. when a single system processes data for multiple different
processing activities, a relation to the processing activity MAY be included.

When included, the reference to the processing activity SHOULD be included using the following
key:

processing activity id:: REQUIRED. A string value containing the URI of the processing
activity within a Processing Activity registry.

NOTE

The processing activity identifier should only be used within the context of an organization and
SHOULD NOT cross organizational boundaries.

5.3.1.2 Algorithm identifier

When data is processed as part of an algorithm in a public registry, such as "Het Algoritmeregister”, a
reference to the relevant algorithm MAY be included.

When included, the reference to the algorithm SHOULD be included using the following key:

algorithm id:: REQUIRED. A string value containing the URI of the algorithm in an algorithm
registry.

NOTE

The algorithm identifier should only be used within the context of an organization and SHOULD

NOT cross organizational boundaries.

https://algoritmes.overheid.nl/

¢ 5.3.2 Examples (non-normative)

The following is a non-normative example of an action:

EXAMPLE 6: Example Action

"name": "can_read"

The following is a non-normative example of an action with additional properties:

EXAMPLE 7: Example Action with properties for extending a book loan.

{
"name": "extend-loan",
"properties": {
"period": "2W"
}
}
5.4 Context

The Context represents the environment of the access evaluation request.
Context is an object which can be used to express attributes of the environment.

Examples of context attributes can include, but are not limited to:

The time of day,

Location from which the request was received,

Capabilities of the PEP,

JSON Schema or JSON-LD definitions for the request.

5 5.4.1 Context Properties

Context MAY include zero or more additional attributes as key-value pairs.

To increase interoperability, a few common properties are specified below:

§ 5.4.1.1 Time

The logical time at which the action was considered to be initiated, identified by the time field,
whose value is a textual representation of the time as defined in [RFC3339].

This timestamp SHOULD be used when a PDP evaluates the access request uses information from
data sources that support temporal queries. See for example the API Design Rules and its temporal

extension.

§ 5.4.1.2 W3C Trace Context

To enable tracing of requests, request identifiers SHOULD be included in the evaluation request.
Request identifiers SHOULD be included in the Context object. They SHOULD be in the form of
tracestate and traceparent values as defined by [trace-context-1].

When included, the W3C Trace Context SHOULD be included in the Context object using the
following keys:

traceparent: : REQUIRED. An string value containing a value as defined in Section 3.2.2 of [trace-

context-1]

tracestate: : REQUIRED. An string value containing a value as defined in Section 3.3.1.1 of
[trace-context-1]

§ 5.4.1.3 Verifiable claims

As described in 11.4 Trust, it is recommended to consider values in the information model as trusted
and valid. For purposes of defense-in-depth and traceability, verifiable claims for values in the

https://gitdocumentatie.logius.nl/publicatie/api/adr/2.0
https://docs.geostandaarden.nl/api/API-Strategie-ext/#temporal
https://docs.geostandaarden.nl/api/API-Strategie-ext/#temporal

information model MAY be provided. The verifiable claims MAY use standards such as, but not limited
to, SAML ([SAML2-CORE]), Oauth ([RFC6749]), and Verifiable Credentials ([vc-data-model-2.0]).

5.4.1.4 Meta-information Model

It is RECOMMENDED to make the information model self-describing by including a URL to the

meta-information model 5. Information Model in the context.

When included, the meta-information model SHOULD be included in Context object as the following
key

mim: : REQUIRED. A string value containing a URL that links to the meta-information model for the
request.

5.4.1.5 Linked Data context

When a transport (10. Transport) does not use a Linked Data format as its serialization, the Context
SHOULD include a URL to a resource, called the "Linked Data context" that allows the information
model to be converted to a Linked Data representation.

NOTE

The Linked Data context is not the same as the Context object. The Context object describes the
context in which an evaluation request takes place. The Linked Data context describes how to
convert the entire request, containing a Subject, Action, Resource and Context object, to a Linked
Data representation.

When included, the Linked Data context SHOULD be included in Context object as the following key:

1d-context: : REQUIRED. An object that provides context for mapping the serialized information

model to Linked Data, or a string value containing a URL from which the mapping can be retrieved.

When serializing the information model to JSON it is RECOMMENDED to use [JSON-LD11] to
provide the Linked Data context. In that case, the value of the 1d-context key should be considered
as the value of the @context key at top-level.

5.4.2 Examples (non-normative)

The following is a non-normative example of a Context:

EXAMPLE 8: Example Context

“time": "1985-10-26T01:22-07:00"

5.5 Decision
A Decision is the result of the evaluation of an access request. It provides the information required for
the PEP to enforce the decision.

Decision is an object that contains a REQUIRED decision key with a boolean value, and an
OPTIONAL context key with an object value.

decision: : REQUIRED. A boolean value that specifies whether the Decision is to allow or deny the

operation.

context: : OPTIONAL. An object which can convey additional information that can be used by the

PEP as part of the decision enforcement process.

In this specification, assuming the evaluation was successful, there are only two possible values for
the decision:

e true: The access request is permitted to go forward. If the PEP does not understand information

in the context response object, the PEP MAY choose to reject the decision.

o false: The access request is denied and MUST NOT be permitted to go forward.

The following is a non-normative example of a minimal Decision:

EXAMPLE 9: Example Decision

"decision": true

§ 5.5.1 Decision Context

In addition to a decision, a response MAY contain a context field which contains an object. This

context can convey additional information that can be used by the PEP as part of the decision

enforcement process.

Examples include, but are not limited to:

Reason(s) a decision was made,

"Advices" and/or "Obligations" tied to the access decision,
Hints for rendering UI state,

Instructions for step-up authentication,

Environmental information,

etc.

¢ 5.5.2 Examples (non-normative)

The following are all non-normative examples of possible and valid contexts, provided to illustrate

possible usages. The actual semantics and format of the context object are an implementation

concern and outside the scope of this specification. For example, implementations MAY use keys that

correspond to concepts from other standards, such as HTTP status codes, to convey common reasons

in an interoperable manner.

§ 5.5.2.1 Non-normative Example 1: conveying decision Reasons

The PDP may provide reasons to explain a decision. In the non-normative example below, an

implementation might convey different reasons to administrators and end-users, using keys that could

correspond to HTTP status codes:

EXAMPLE 10: Non-normative Example Response with reason Context

"decision": false,
"context": {
"reason_admin": {
"403": "Request failed policy CO76E82F"
I
"reason user": {
"403": "Insufficient privileges. Contact your administrator"

§ 5.5.2.2 Non-normative Example 2: conveying metadata and environmental elements

In the following non-normative example, the PDP justifies its decision by including environmental
conditions that did not meet its policies. Metadata pertaining to the decision response times is also
provided:

EXAMPLE 11: Non-normative Example Response with Environment and Metadata Context

"decision": false,
"context": {
"metadata": {
"response-time": 60,
"response-time-unit":

ms

},

"environment": {
"ip": "10.10.0.1",
"datetime": "2025-06-27T18:03:07Z",
"os": "ubuntu24.04.2LTS-AMDx64"

§ 5.5.2.3 Non-normative Example 3: requesting step-up authentication

In the following non-normative example, the PDP requests a step-up authentication of the requesting
subject, by signalling the required acr and amr access token claim values it expects to see in order to

approve the request:

EXAMPLE 12: Non-normative Example Response with a step-up request Context

{
"decision": false,
"context": {
"acr _values": "urn:com:example:loa:3",
"amr _values": "mfa hwk"
}
¥

6. Access Evaluation API

The Access Evaluation API defines the message exchange pattern between a PEP and a PDP for

executing a single access evaluation.

6.1 The Access Evaluation API Request

The Access Evaluation request is an object consisting of four entities previously defined in the
Information Model (5. Information Model):

subject: : REQUIRED. The subject (or principal) of type Subject

action: : REQUIRED. The action (or verb) of type Action.

resource: : REQUIRED. The resource of type Resource.

context: : OPTIONAL. The context (or environment) of type Context.

¢ 6.1.1 Example (non-normative)

EXAMPLE 13: Example Request

{
"subject": {
"type": "user",
"id": "alice@example.com"
},
"resource": {
"type": "account",
"id": "123"
b
"action": {
"name": "can_read",
"properties": {
"method": "GET"
}
},
"context": {
"time": "1985-10-26T01:22-07:00"
}
}

6.2 The Access Evaluation API Response

The response of the Access Evaluation API consists of the Decision entity as defined in the

Information Model (5. Information Model).

7. Access Evaluations API

The Access Evaluations API defines the message exchange pattern between a PEP and a PDP for
evaluating multiple access evaluations within the scope of a single message exchange (also known as

"boxcarring" requests).

7.1 The Access Evaluations API Request

The Access Evaluation API Request builds on the information model presented in 5. Information
Model and the object defined in the Access Evaluation Request (6.1 The Access Evaluation API

Request).

To send multiple access evaluation requests in a single message, the PEP MAY add an evaluations
key to the request. The evaluations key is an array which contains a list of objects, each typed as
the object as defined in the Access Evaluation Request (6.1 The Access Evaluation API Request), and

specifying a discrete request.

If an evaluations array is NOT present or is empty, the Access Evaluations Request behaves in a
backwards-compatible manner with the (single) Access Evaluation API Request (6.1 The Access
Evaluation API Request).

If an evaluations array IS present and contains one or more objects, these form distinct requests
that the PDP will evaluate. These requests are independent from each other, and may be executed
sequentially or in parallel, left to the discretion of each implementation.

The top-level subject, action, resource, and context keys provide default values for their
respective fields in the evaluations array. The top-level subject, action and resource keys
MAY be omitted if the evaluations array is present, contains one or more objects, and every object
in the evaluations array contains the respective top-level key. This behavior is described in 7.1.1

Default values.

The following is a non-normative example for specifying three requests, with no default values:

EXAMPLE 14

{
"evaluations": [
{
"subject": {
“type": "user",
"id": "alice@example.com"
}
"action": {
"name": "can_read"
},
"resource": {
"type": "document",
"id": "boxcarring.md"
}
"context": {
"time": "2024-05-31T15:22-07:00"
}
},
{
"subject": {
"type": "user",
"id": "alice@example.com"
|
"action": {
“name": "can_ read"
}
"resource": {
"type": "document",
"id": "subject-search.md"
b
"context": {
"time": "2024-05-31T15:22-07:00"
¥
},
{
"subject": {
"type": "user",
"id": "alice@example.com"
},
"action": {
“name": "can read"
I
"resource": {
"type": "document",

"id": "resource-search.md"

b

"context": {
"time": "2024-05-31T15:22-07:00"

§ 7.1.1 Default values

While the example above provides the most flexibility in specifying distinct values in each request for
every evaluation, it is common for boxcarred requests to share one or more values of the evaluation
request. For example, evaluations MAY all refer to a single subject, and/or have the same contextual

(environmental) attributes.
Default values offer a more compact syntax that avoids unnecessary duplication of request data.

The top-level subject, action, resource, and context keys provide default values for each
object in the evaluations array. Any of these keys specified within an individual evaluation object
overrides the corresponding top-level default. Because subject, action, and resource are
required for a valid evaluation, any of these keys omitted from an evaluation object MUST be

provided as a top-level key.

The following is a non-normative example for specifying three requests that refer to a single subject

and context:

EXAMPLE 15

{
"subject": {
"type": "user",
"id": "alice@example.com"
},
"context": {
"time": "2024-05-31T15:22-07:00"
}
"evaluations": [
{
"action": {
“name": "can read"
}
"resource": {
"type": "document",
"id": "boxcarring.md"
}
},
{
"action": {
“name": "can read"
I
"resource": {
"type": "document",
"id": "subject-search.md"
}
},
{
"action": {
"name": "can_read"
}
"resource": {
“type": "document",
“id": "resource-search.md"
}
}
]
}

The following is a non-normative example for specifying three requests that refer to a single subject
and context, with a default value for action, that is overridden by the third request:

EXAMPLE 16

"subject": {
"type": "user",
"id": "alice@example.com"
}
"context": {
"time": "2024-05-31T15:22-07:00"
}
"action": {
"name": "can _read"

}

"evaluations": [
{
"resource": {
"type": "document",
"id": "boxcarring.md"
}
I
{

"resource": {
"type": "document",
"id": "subject-search.md"
}
|
{
"action": {
“name": "can edit"
}
"resource": {
"type": "document",
"id": "resource-search.md"

§ 7.1.2 Evaluations options

The evaluations request payload includes an OPTIONAL options key, with a value that is an
object.

This provides a general-purpose mechanism for providing PEP-supplied metadata on how the request

is to be executed.

One such option controls evaluation semantics, and is described in 7.1.2.1 Evaluations semantics.

A non-normative example of the options field is shown below, following an evaluations array

provided for the sake of completeness:

EXAMPLE 17

"evaluations": [{
"resource": {

“type": "doc",
"id": "1"
I
"subject": {
"type": "doc",
"id": 2"
}
H,
"options": {
"evaluations semantic": "execute all",
"another option": "value"
}

§ 7.1.2.1 Evaluations semantics

By default, every request in the evaluations array is executed and a response returned in the same
array order. This is the most common use-case for boxcarring multiple evaluation requests in a single

payload.
This specification supports three evaluation semantics:

1. Execute all of the requests (potentially in parallel), return all of the results. Any failure can be
denoted by "decision": false and MAY provide a reason code in the context.

2. Deny on first denial (or failure). This semantic could be desired if a PEP wants to issue a few
requests in a particular order, with any denial (error, or "decision": false) "short-circuiting"
the evaluations call and returning on the first denial. This essentially works like the && operator

in programming languages.

3. Permit on first permit. This is the converse "short-circuiting" semantic, working like the | |

operator in programming languages.

To select the desired evaluation semantic, a PEP can pass in options.evaluations semantic
with exactly one of the following values:

e execute all
e deny on first deny

e permit on first permit

execute all is the default semantic, so an evaluations request without the
options.evaluations semantic flag will execute using this semantic.

§ 7.1.2.1.1 ExampLE: EVALUATE read ACTION FOR THREE DOCUMENTS USING ALL THREE SEMANTICS

Execute all requests:

EXAMPLE 18

"subject": {
“"type": "user",
"id": "alice@example.com"
},
"action": {
“name": "read"
},
"options": {
"evaluations semantic": "execute all"

b

"evaluations": [
{
"resource": {
"type": "document",
"id": "1"
}
}
{

"resource": {
"type": "document",
"id": "2"
}
I
{
"resource": {
"type": "document",
"id": "3"

Response:

EXAMPLE 19

{
"evaluations": [
{
"decision": true
J i
{
"decision": false
+
{
"decision": true
}
]
}

Deny on first deny:

EXAMPLE 20

"subject": {
“"type": "user",
"id": "alice@example.com"
},
"action": {
“name": "read"
},
"options": {
"evaluations semantic": "deny on first deny"

b

"evaluations": [
{
"resource": {
"type": "document",
"id": "1"
}
}
{

"resource": {
"type": "document",
"id": "2"
}
I
{
"resource": {
"type": "document",
"id": "3"

Response:

EXAMPLE 21

{
"evaluations": [
{
"decision": true
}
{
"decision": false,
"context": {
"code": "200",
"reason": "deny on first deny"
}
¥
]
}

Permit on first permit:

EXAMPLE 22

"subject": {
“"type": "user",
"id": "alice@example.com"
},
"action": {
“name": "read"
},
"options": {
"evaluations semantic": "permit on first permit"

b

"evaluations": [
{
"resource": {
"type": "document",
"id": "1"
}
}
{

"resource": {
"type": "document",
"id": "2"
}
I
{
"resource": {
"type": "document",
"id": "3"

Response:

EXAMPLE 23

{
"evaluations": [
{
"decision": true
}
]
}

7.2 The Access Evaluations API Response

Like the request format, the Access Evaluations Response format for an Access Evaluations Request
adds an evaluations array that lists the decisions in the same order they were provided in the
evaluations array in the request. Each value of the evaluations array is typed as a Decision as
defined in the Information Model (5. Information Model).

In case the evaluations array is present, it is RECOMMENDED that the decision key of the
response be omitted. If present, it can be ignored by the PEP.

The following is a non-normative example of a Access Evaluations Response to an Access
Evaluations Request containing three evaluation objects:

EXAMPLE 24

{
"evaluations": [
{
"decision": true
},
{
"decision": false,
"context": {
“reason": "resource not found"
}
I
{
"decision": false,
"context": {
"reason": "Subject is a viewer of the resource"
}
}
]
}

§ 7.2.1 Errors

There are two types of errors, and they are handled differently:

1. Transport-level errors, or errors that pertain to the entire payload.

2. Errors in individual evaluations.

The first type of error is handled at the transport level. For example, for the HTTP binding, the 4XX

and 5XX codes indicate a general error that pertains to the entire payload, as described in Transport

(10. Transport).

The second type of error is handled at the payload level. Decisions default to closed (i.e. false), but
the context field can include errors that are specific to that request.

The following is a non-normative example of a response to an Access Evaluations Request containing
three evaluation objects, two of them demonstrating how errors can be returned for two of the

evaluation requests:

EXAMPLE 25

{
"evaluations": [
{
"decision": true
},
{
"decision": false,
"context": {
"error": {
"status": 404,
"message": "Resource not found"
}
}
},
{
"decision": false,
"context": {
"reason": "Subject is a viewer of the resource"
}
}
]
}

8. Search APIs

The Search APIs enable a PEP to discover the set of subjects, resources, or actions that are permitted
within a specific authorization context. Their purpose is to return a list of authorized entities, rather
than verify a single access request.

To perform a search, the PEP provides the Subject, Resource, Action, and Context entities defined in

the Information Model (5. Information Model), but omits the unique identifier of the entity being

queried. The PDP then responds with the set of authorized entities for the queried entity type which

would be authorized according to the provided criteria.

8.1 Semantics

A search is designed to return entities that would correspond to a permitted decision. Therefore, any

result from a Search API, when subsequently used in an Access Evaluation API call, SHOULD result

ina "decision": true response. However, because the evaluation is implementation-specific and

may depend on other variables (such as time), this outcome is not guaranteed.

In addition, it is RECOMMENDED that a search be performed transitively, traversing intermediate
attributes and/or relationships. For example, if user U is a member of group G, and group G is
designated as a viewer on a document D, then a search for all subjects of type user that can view

document D will include user U.

8.2 Pagination

Search APIs can return large result sets. To manage this, a PDP MAY support pagination, allowing a
PEP to navigate and retrieve subsets of the total result set.

Pagination does not guarantee an atomic snapshot of the result set. Consequently, if items are added or

removed while paginating, results MAY be repeated or omitted between pages.

Pagination is based on the use of opaque tokens. A PEP makes an initial request for data by sending a
query that does not contain a token. If the PDP determines that the result set contains too many results
to fit in a single response, the PDP returns a partial result set and a token that the PEP can use to
retrieve the next page of results.

A paginated response MUST be clearly identified by the inclusion of a page object containing a non-
empty, opaque next token. This token is the signal to the PEP that more results are available.

To retrieve the next page, the PEP sends a subsequent request containing a page object with the
token field set to the next token value from the previous response. This process is repeated until
the PDP returns a page object in which the value of the next token field is an empty string,
signaling the end of the result set.

When a request contains a token, all entities (e.g., subject, resource, action, context) and
pagination parameters (e.g., Limit) MUST be identical to the preceding request. PDPs SHOULD

return an error when any entity or parameter has been changed.

PEPs that wish to sequentially iterate through the entire result set SHOULD use the core pagination
mechanism described above, which is designed to work consistently across all PDPs that support the
search APIs.

8.2.1 Paginated Requests

A Search API Request MAY include a page object indicating which subset of the larger result set the

PEP would like to receive.

The page object in a Search API Request consists of the following keys:
token: : OPTIONAL. An opaque string value from the next token of a previous response.

limit: : OPTIONAL. A non-negative integer indicating the maximum number of results to return in

the response.

properties: : OPTIONAL. An object containing additional implementation-specific pagination
request attributes, such as, but not limited to, sorting and filtering.

Apart from the token, all values from the initial request MUST remain identical for subsequent pages.
If a different value is provided mid-pagination the PDP SHOULD return an error.

Additional keys MAY be included in the page object. If they are, they MUST be defined in a
specification referenced in the AuthZEN Policy Decision Point Capabilities Registry (12.3 AuthZEN
Policy Decision Point Capabilities Registry). Furthermore, the PDP MUST declare support for the

corresponding capability URN in its supported capabilities metadata (9.1.2 Capabilities

Parameters).

8.2.2 Paginated Responses

Any Search API Response MAY include a page object, but if a response does not contain the entire
result set, it MUST include this object.

The page object contains the following keys:

next token:: REQUIRED. An opaque string value indicating the next page of results to return. If

there are no more results after this page, its value MUST be an empty string.

count: : OPTIONAL. A non-negative integer indicating the number of results included in this
response. When included at the start of a response, as described in the Search API Response (8.3 The

Search API Response), this enables a PEP to display a progress indicator when processing large or

slow responses.

total:: OPTIONAL. A non-negative integer indicating the total number of results matching the query
criteria at the time of the request. This value is not guaranteed to equal the total number of items
returned across all pages if the underlying data set changes during pagination.

properties: : OPTIONAL. An object containing additional pagination response attributes. Examples

include, but are not limited to, estimated totals or the number of remaining results.

¢ 8.2.3 Examples (non-normative)

The following is a non-normative example of a request-response cycle to retrieve a total of three

results with a page size limit of two.

EXAMPLE 26: Example initial Search API Request

{
"subject": {
"type": "user",
"id": "alice@example.com"
},
"action": {
"name": "can read"
},
"resource": {
"type": "account"
},
"page": {
"limit": 2
}

EXAMPLE 27: Example initial Search API Response

{
"page": {
"next token": "a3MINDU203N6PTI=",
"count": 2,
"total": 3
|
"results": [
{
"type": "account",
"id": "123"
}
{
“type": "account",
"id": "456"
}
]
}

EXAMPLE 28: Example second Search API Request

{
"subject": {
"type": "user",
"id": "alice@example.com"
b
"action": {
"name": "can read"
},
"resource": {
"type": "account"
I
"page": {

"token": "a3MI9NDU203N6PTI="

EXAMPLE 29: Example second Search API Response

{
"page": {
"next token": "",
"count": 1,
"total": 3
|
"results": [
{
"type": "account",
"id": "789"
}
]
}

8.3 The Search API Response

The response to a Search API Request always follows the same structure. Each Search API Response
is a JSON object with the following keys:

page: : OPTIONAL. An object providing pagination information, as defined in Paginated Responses
(8.2.2 Paginated Responses). It is RECOMMENDED that the page object be the first key in the
response, as this allows a PEP to use the count value to display a progress indicator when processing

large or slow responses.

context: : OPTIONAL. An object that can convey additional information that can be used by the
PEP, similar to its function in the Access Evaluation Response (see 6.2 The Access Evaluation API

Response).

results: : REQUIRED. An array containing zero or more entities, as defined in the Information
Model (5. Information Model). It MUST contain only entities of the type being searched for (e.g.,

Subjects, Resources, or Actions).

The following is a non-normative example of a search response returning resources:

EXAMPLE 30: Example Resource Search API Response

{
"page": {
"count": 2,
"total": 102
},
"context": {
"query execution time ms": 42
}
"results": [
{
"type": "account",
"id": "123"
},
{
"type": "account",
"id": "456"
}
]
}

8.4 Subject Search API

The Subject Search API returns all subjects of a given type that are permitted according to the
provided Action (5.3 Action), Resource (5.2 Resource), and Context (5.4 Context).

8.4.1 The Subject Search API Request

The Subject Search request is an object consisting of the following entities:

subject: : REQUIRED. The subject (or principal) of type Subject. The Subject MUST contain a
type, but the Subject id SHOULD be omitted, and if present, MUST be ignored.

action: : REQUIRED. The action (or verb) of type Action.
resource: : REQUIRED. The resource of type Resource.
context: : OPTIONAL. Contextual data about the request.

page: : OPTIONAL. A page object for paginated requests.

¢ 8.4.2 Example (non-normative) {#subject-search-example"}

The following payload defines a request for the subjects of type user that can perform the can_read
action on the resource of type account and ID 123.

EXAMPLE 31: Example Subject Search API Request

{

"subject": {
"type": "user"

},

"action": {

“name": "can read"

},

"resource": {
"type": "account",
"id": "123"

},

"context": {

"time": "2024-10-26T01:22-07:00"

}

}

The following payload defines a valid response to this request.

EXAMPLE 32: Example Subject Search API Response

"results":

{
lltypell :

[

"user",

"id" :

Iltypell

Ilidll :

"alice@example.com"

: "user",
"bob@example.com"

8.5 Resource Search API

The Resource Search API returns all resources of a given type that are permitted according to the
provided Action (5.3 Action), Subject (5.1 Subject), and Context (5.4 Context).

8.5.1 The Resource Search API Request

The Resource Search request is an object consisting of the following entities:
subject: : REQUIRED. The subject (or principal) of type Subject.
action: : REQUIRED. The action (or verb) of type Action.

resource: : REQUIRED. The resource of type Resource. The Resource MUST contain a type, but
the Resource id SHOULD be omitted, and if present, MUST be ignored.

context: : OPTIONAL. Contextual data about the request.

page: : OPTIONAL. A page object for paginated requests.

8.5.2 Example (non-normative) {#resource-search-example"}

The following payload defines a request for the resources of type account on which the subject of
type user and ID alice@example. com can perform the can_read action.

EXAMPLE 33: Example Resource Search API Request

{
"subject": {
“type": "user",
"id": "alice@example.com"
},
"action": {
"name": "can read"
},
"resource": {
“type": "account”
}

The following payload defines a valid response to this request.

EXAMPLE 34: Example Resource Search API Response

{
"results": [
{
"type": "account",
Ilidll: II123II
b
{
"type": "account",
Ilidll: II456II
}
]
}

8.6 Action Search API

The Action Search API returns all actions that are permitted according to the provided Subject (5.1
Subject), Resource (5.2 Resource), and Context (5.4 Context).

& 8.6.1 The Action Search API Request

The Action Search request is an object consisting of the following entities:
subject: : REQUIRED. The subject (or principal) of type Subject.
resource: : REQUIRED. The resource of type Resource.

context: : OPTIONAL. Contextual data about the request.

page: : OPTIONAL. A page object for paginated requests.

NOTE

Unlike the Subject and Resource Search APIs, the action key is omitted from the Action Search
request payload.

§ 8.6.2 Example (non-normative) {#action-search-example"}

The following payload defines a request for the actions that the subject of type user with ID 123 may
perform on the resource of type account and ID 123 at 01:22 AM.

EXAMPLE 35: Example Action Search API Request

{
"subject": {
"type": "user",
"id": "alice@example.com"
},
"resource": {
"type": "account",
"id": "123"
},
"context": {
"time": "2024-10-26T01:22-07:00"
}
}

The following payload defines a valid response to this request.

EXAMPLE 36: Example Action Search API Response

{
"results": [
{
“name": "can read"
b
{
"name": "can write"
}
]
}

9. Policy Decision Point Metadata

It is RECOMMENDED that PDPs provide metadata describing their configuration.

9.1 Data structure

The following Policy Decision Point metadata parameters are used by this specification and are
registered in the IANA "AuthZEN Policy Decision Point Metadata" registry established in 12.1
AuthZEN Policy Decision Point Metadata Registry.

¢ 9.1.1 Endpoint Parameters

policy decision point:: REQUIRED. The Policy Decision Point identifier, which is a URL that
uses the "https" scheme and has no query or fragment components. Policy Decision Point metadata is
published at a location that is ".well-known" according to [RFC8615] derived from this Policy

Decision Point identifier, as described in 9.2 Obtaining Policy Decision Point Metadata. The Policy
Decision Point identifier is used to prevent Policy Decision Point mix-up attacks.

access_evaluation endpoint:: REQUIRED. URL of Access Evaluation API endpoint
access evaluations endpoint:: OPTIONAL. URL of Access Evaluations API endpoint
search subject endpoint:: OPTIONAL. URL of Search API endpoint for subject entities
search _action endpoint:: OPTIONAL. URL of Search API endpoint for action entities

search _resource endpoint:: OPTIONAL. URL of Search API endpoint for resource entities

NOTE

The absence of any of these parameters is sufficient for the PEP to determine that the PDP is not
capable and therefore will not return a result for the associated API.

§ 9.1.2 Capabilities Parameters

capabilities:: OPTIONAL. JSON array containing a list of registered IANA URNSs referencing
PDP specific capabilities.

¢ 9.1.3 Signature Parameter

In addition to JSON elements, metadata parameters MAY also be provided as a signed _metadata
value, which is a JSON Web Token [RFC7519] that asserts metadata values about the PDP as a
bundle. A set of metadata parameters that can be used in signed metadata as claims are defined in 9.1.1
Endpoint Parameters. The signed metadata MUST be digitally signed or MACed using JSON Web
Signature [RFC7515] and MUST contain an 1ss (issuer) claim denoting the party attesting to the

claims in the signed metadata.

A PEP MAY ignore the signed metadata if they do not support this feature. If the PEP supports signed
metadata, metadata values conveyed in the signed metadata MUST take precedence over the
corresponding values conveyed using plain JSON elements. Signed metadata is included in the Policy
Decision Point metadata JSON object using this OPTIONAL metadata parameter:

signed metadata: : AJWT containing metadata parameters about the protected resource as claims.
This is a string value consisting of the entire signed JWT. A signed metadata parameter SHOULD
NOT appear as a claim in the JWT; it is RECOMMENDED to reject any metadata in which this

occurs.

9.2 Obtaining Policy Decision Point Metadata

PDPs supporting metadata MUST make a JSON document containing metadata as specified in the
AuthZEN Policy Decision Point Metadata Registry (12.1 AuthZEN Policy Decision Point Metadata
Registry) available at a URL formed by inserting a well-known URI string between the host

component and the path and/or query components, if any. The well-known URI string used is

/ .well-known/authzen-configuration.

The syntax and semantics of .well-known are defined in [RFC8615]. The well-known URI path suffix
used is registered in the JANA "Well-Known URIs" registry.

An example of a PDP supporting multiple tenants will have a discovery endpoint as follows:

https://pdp.example.com/.well-known/authzen-configuration/tenantl

§ 9.2.1 Policy Decision Point Metadata Request

A Policy Decision Point metadata document MUST be queried using an HTTP GET request at the
previously specified URL. The consumer of the metadata would make the following request when the

https://www.iana.org/assignments/well-known-uris/well-known-uris.xhtml

resource identifier is https://pdp.example. com:

EXAMPLE 37

GET /.well-known/authzen-configuration HTTP/1.1
Host: pdp.example.com

§ 9.2.2 Policy Decision Point Metadata Response

The response is a set of metadata parameters about the protected resource's configuration.

A successful response MUST use the HTTP status code 200 and a Content-Type of
application/json. Its body MUST be a JSON object that contains a set of metadata parameters as
defined in the AuthZEN Policy Decision Point Metadata Registry (12.1 AuthZEN Policy Decision
Point Metadata Registry).

Any metadata parameters in the response that are not understood by the PEP MUST be ignored.

Parameters that have multiple values are represented as JSON arrays. Parameters that have no values
MUST be omitted from the response.

An error response uses the applicable HTTP status code value.

The following is a non-normative example response:

EXAMPLE 38

HTTP/1.1 200 OK
Content-Type: application/json

"policy decision point": "https://pdp.example.com",

"access evaluation endpoint": "https://pdp.example.com/access/v1l/evalu:
"search subject endpoint": "https://pdp.example.com/access/vl/search/si
“search resource endpoint": "https://pdp.example.com/access/vl/search/i

& 9.2.3 Policy Decision Point Metadata Validation

The policy decision point value returned MUST be identical to the Policy Decision Point
identifier value into which the well-known URI string was inserted to create the URL used to retrieve

the metadata. If these values are not identical, the data contained in the response MUST NOT be used.

The recipient MUST validate that any signed metadata was signed by a key belonging to the issuer and
that the signature is valid. If the signature does not validate or the issuer is not trusted, the recipient
SHOULD treat this as an error condition.

10. Transport

This specification defines an HTTPS binding using JSON serialization which MUST be implemented
by a compliant PDP.

Additional transport bindings (e.g. gRPC or CoAP) MAY be defined in the future in the form of
profiles, and MAY be implemented by a PDP.

10.1 HTTPS JSON Binding

All API requests within this binding are made via an HTTPS POST request.

Requests MUST include a Content-Type header with the value application/json, and the
request body for each endpoint MUST be a JSON object that conforms to the corresponding request

structure, as defined in .

A successful response is an HTTPS response with a status code of 200 and a Content-Type of
application/json. Its body is a JSON object that conforms to the corresponding response

structure, as defined in .

The request URL MUST be the value of the corresponding endpoint parameter, as defined in , if it is
provided in the Policy Decision Point metadata (9.1.1 Endpoint Parameters). If the parameter is not
provided, the URL SHOULD be formed by appending the default path, as defined in , to the PDP's
base URL (which is the policy decision point value from the Policy Decision Point metadata, if

available.

The following table provides an overview of the API endpoints defined in this binding:

API
Endpoint

Access

Evaluation

Access

Evaluations

Subject
Search

Resource
Search

Action
Search

Default Path

/access/v1/evaluation

/access/v1/evaluations

/access/v1/search/subject

/access/v1/search/resource

/access/v1/search/action

Metadata Parameter

access_evaluation_endpoint

access_evaluations_endpoint

search_subject_endpoint

search_resource_endpoint

search_action_endpoint

Request Response
Schema Schema
6.1 The 6.2 The
Access Access
Evaluation Evaluation
API API
Request Response
7.1 The 7.2 The
Access Access
Evaluations Evaluations
API API
Request Response
8.4.1 The
S 8.3 The
ubjec

Search API
Search API

Response
Request
8.5.1 The

8.3 The
Resource

Search API
Search API

Response
Request
8.6.1 The

] 8.3 The

Action

Search API
Search API

Response
Request

§ 10.1.1 JSON Serialization

This section specifies the serialization of the information model entities and API schemas defined in

this document to the JSON format [RFC8259]. The top-level element of all request and response
bodies MUST be a JSON object (Section 4 of [RFC8259]). Implementations SHOULD also adhere to
the security recommendations in JSON Payload Considerations (11.5 JSON Payload Considerations).

The data types defined in this specification are mapped to JSON types as follows:

Object: : Represented as a JSON object (Section 4 of [RFC8259]). The values of its members can be
any valid JSON value as defined in Section 3 of [RFC8259], including other objects and arrays, unless

specified otherwise.

Array: : Represented as a JSON array (Section 5 of [RFC8259]).

String: : Represented as a JSON string (Section 7 of [RFC8259]).

Integer: : Represented as a JSON number (Section 6 of [RFC8259]). Note the recommendation in 11.5

JSON Payload Considerations to not encode values that exceed IEEE 754 double-precision.

Boolean: : Represented as the JSON literals true or false (Section 3 of [RFC8259]).

¢ 10.1.2 Error Responses

The following error responses are common to all methods of the Authorization API. The error
response is indicated by an HTTPS status code (Section 15 of [RFC9110]) that indicates error.

The following errors are indicated by the status codes defined below:

Code Description HTTPS Body Content

400 Bad Request ~ An error message string
401 Unauthorized An error message string
403 Forbidden An error message string

500 Internal Error ~ An error message string

NOTE

HTTPS errors are returned by the PDP to indicate an error condition relating to the request or its
processing; they are unrelated to the outcome of an authorization decision and are distinct from it.
A successful request that results in a "deny" is indicated by a 200 OK status code with a {
"decision": false } payload.

To make this concrete:

e a 401 HTTPS status code indicates that the PEP did not properly authenticate to the PDP - for

example, by omitting a required Authorization header, or using an invalid access token.

e the PDP indicates to the PEP that the authorization request is denied by sending a response with a
200 HTTPS status code, along with a payload of { "decision": false }.

§ 10.1.3 Request Identification

All requests to the API MAY have request identifiers to uniquely identify them. The PEP is responsible
for generating the request identifier. If present, it is RECOMMENDED to use the HTTPS Header X-
Request-1ID as the request identifier. The value of this header is an arbitrary string. The following

non-normative example describes this header:

EXAMPLE 39: Example HTTPS request with a Request Id Header

POST /access/vl/evaluation HTTP/1.1
Authorization: Bearer mF_9.B5f-4.1JgM
X-Request-ID: bfe9eb29-ab87-4ca3-be83-ald5d8305716

When an Authorization API request contains a request identifier the PDP MUST include a request
identifier in the response. It is RECOMMENDED to specify the request identifier using the HTTPS
Response header X-Request-ID. If the PEP specified a request identifier in the request, the PDP
MUST include the same identifier in the response to that request.

The following is a non-normative example of an HTTPS Response with this header:
EXAMPLE 40: Example HTTPS response with a Request Id Header
HTTP/1.1 OK

Content-Type: application/json
X-Request-ID: bfe9eb29-ab87-4ca3-be83-a1d5d8305716

§ 10.1.4 Examples (non-normative)

The following is a non-normative example of the HTTPS binding of the Access Evaluation Request:

EXAMPLE 41: Example of an HTTPS Access Evaluation Request

POST /access/vl/evaluation HTTP/1.1

Host: pdp.example.com

Content-Type: application/json

Authorization: Bearer

X-Request-ID: bfe9eb29-ab87-4ca3-be83-al1d5d8305716

{
"subject": {
"type": "user",
"id": "alice@example.com"
},
"resource": {
"type": "todo",
"id": "1
3,
"action": {
"name": "can read"
},
"context": {
"time": "1985-10-26T01:22-07:00"
}
}

The following is a non-normative example of an HTTPS Access Evaluation Response:

EXAMPLE 42: Example of an HTTP Access Evaluation Response
HTTP/1.1 OK

Content-Type: application/json
X-Request-ID: bfe9eb29-ab87-4ca3-be83-al1d5d8305716

"decision": true

The following is a non-normative example of a the HTTPS binding of the Access Evaluations

Request:

EXAMPLE 43: Example of an HTTPS Access Evaluations Request

POST /access/vl/evaluations HTTP/1.1

Host: pdp.example.com

Content-Type: application/json

Authorization: Bearer

X-Request-ID: bfe9eb29-ab87-4ca3-be83-al1ld5d8305716

"subject": {
"type": "user",
"id": "alice@example.com"
},
"context": {
"time": "2024-05-31T15:22-07:00"
},
"action": {
"name": "can read"

},
"evaluations": [
{
"resource": {
“type": "document",
"id": "boxcarring.md"

}
},
{
"resource": {
"type": "document",
"id": "subject-search.md"

}
},
{
"action": {
"name": "can edit"
}
"resource": {
"type": "document",
"id": "resource-search.md"

The following is a non-normative example of an HTTPS Access Evaluations Response:

EXAMPLE 44: Example of an HTTPS Access Evaluations Response

HTTP/1.1 OK
Content-Type: application/json
X-Request-ID: bfe9eb29-ab87-4ca3-be83-al1d5d8305716

{
"evaluations": [
{
"decision": true
|
{
"decision": false,
"context": {
"error": {
"status": 404,
"message": "Resource not found"
}
}
},
{
"decision": false,
"context": {
"reason": "Subject is a viewer of the resource"
}
}
]
}

The following is a non-normative example of the HTTPS binding of the Subject Search Request:

EXAMPLE 45: Example of an HTTPS Subject Search Request

POST /access/vl/search/subject HTTP/1.1

Host: pdp.example.com

Content-Type: application/json

Authorization: Bearer

X-Request-ID: bfe9eb29-ab87-4ca3-be83-al1d5d8305716

{

"subject": {
"type": "user"

},

"action": {

“name": "can read"

},

"resource": {
"type": "account",
"id": "123"

}

}

The following is a non-normative example of an HTTPS Subject Search Response:

EXAMPLE 46: Example of an HTTPS Subject Search Response

HTTP/1.1 OK
Content-Type: application/json
X-Request-ID: bfe9eb29-ab87-4ca3-be83-a1d5d8305716

{
"page": {
"next token": "a3MINDU203N6PTI="
},
"results": [
{
"type": "user",
"id": "alice@example.com"
}
{
"type": "user",
"id": "bob@example.com"
}

The following is a non-normative example of the HTTPS binding of the Resource Search Request:

EXAMPLE 47: Example of an HTTPS Resource Search Request

POST /access/vl/search/resource HTTP/1.1

Host: pdp.example.com

Content-Type: application/json

Authorization: Bearer

X-Request-ID: bfe9eb29-ab87-4ca3-be83-al1ld5d8305716

{
"subject": {
"type": "user",
"id": "alice@example.com"
},
"action": {
"name": "can read"
},
"resource": {
"type": "account"
}
}

The following is a non-normative example of an HTTPS Resource Search Response:

EXAMPLE 48: Example of an HTTPS Resource Search Response

HTTP/1.1 OK
Content-Type: application/json
X-Request-ID: bfe9eb29-ab87-4ca3-be83-ald5d8305716

{
"page": {
"next token": "a3MINDU203N6PTI="
},
"results": [
{
“type": "account",
"id": "123"
},
{
"type": "account",
"id": "456"
}
]
}

The following is a non-normative example of the HTTPS binding of the Action Search Request:

EXAMPLE 49: Example of an HTTPS Action Search Request

POST /access/vl/search/action HTTP/1.1

Host: pdp.example.com

Content-Type: application/json

Authorization: Bearer

X-Request-ID: bfe9eb29-ab87-4ca3-be83-al1ld5d8305716

{
"subject": {
"type": "user",
"id": "alice@example.com"
},
"resource": {
"type": "account",
"id": "123"
3,
"context": {
"time": "2024-10-26T01:22-07:00"
}
}

The following is a non-normative example of an HTTPS Action Search Response:

EXAMPLE 50: Example of an HTTPS Action Search Response

HTTP/1.1 OK
Content-Type: application/json
X-Request-ID: bfe9eb29-ab87-4ca3-be83-al1d5d8305716

{
Ilpagell: {
"next token": "a3MINDU203N6PTI="
H
"results": [
{
"name": "can read"
I
{
“name": "can write"
}

11. Security Considerations

11.1 Communication Integrity and Confidentiality

In the ABAC architecture, the PEP-PDP connection is the most sensitive one and needs to be secured
to guarantee:

o Integrity

¢ Confidentiality

As a result, the connection between the PEP and the PDP MUST be secured using the most adequate
means given the choice of transport (e.g. TLS for HTTP REST).

11.2 Policy Confidentiality and Sender Authentication

Additionally, the PDP SHOULD authenticate the calling PEP. There are several ways authentication
can be established. These ways are out of scope of this specification. They MAY include:

e Mutual TLS

e OAuth-based authentication

e API key
The choice and strength of either mechanism is not in scope.

Authenticating the PEP allows the PDP to avoid common attacks (such as DoS - see below) and/or
reveal its internal policies. A malicious actor could craft a large number of requests to try and
understand what policies the PDP is configured with. Requesting a PEP be authenticated mitigates that

risk.

11.3 Sender Authentication Failure

If the protected resource request does not include the proper authentication credentials, or does not
have a valid authentication scheme proof that enables access to the protected resource, the resource
server MUST respond with a 401 HTTP status code and SHOULD include the HTTP "WWW-
Authenticate" response header field; it MAY include it in response to other conditions as well. The

"WWW-Authenticate" header field uses the framework defined by HTTP/1.1 [RFC2617] and

indicates the expected authentication scheme as well as the realm that has authority for it.

The following is a non-normative example response:

HTTP/1.1 401 Unauthorized
WwWw-Authenticate: Bearer realm="https://as.example.com"

11.4 Trust

In ABAC, there are occasionally conversations around the trust between PEP and PDP: how can the
PDP trust that the PEP is sending the correct values? The architecture of this model assumes the PDP
must trust the PEP, as the PEP is ultimately responsible for enforcing the decision the PDP produces.

11.5 JSON Payload Considerations

To ensure the unambiguous interpretation of JSON payloads, implementations SHOULD process and
generate JSON payloads in a manner consistent with the I-JSON profile ([RFC7493]). In particular,
implementations SHOULD ensure that:

e JSON text is encoded as UTF-8, and strings do not contain invalid Unicode sequences such as
unpaired surrogates (Section 2.1 of [RFC7493]).

e Numeric values do not exceed the magnitude or precision supported by IEEE 754 double-
precision (Section 2.2 of [RFC7493]).

e Member names within a JSON object are unique after processing escape characters (Section 2.3
of [RFC7493]).

To avoid ambiguity between a property that is absent and one that is present with a null value,
properties with a value of null SHOULD be omitted from JSON objects.

11.6 Authorization Response Integrity
The PDP MAY choose to sign its authorization response, ensuring the PEP can verify the integrity of
the data it receives. This practice is valuable for maintaining trust in the authorization process.

The PEP can ensure that the authorization response is not tampered with by verifying the signature of

the authorization decision if it is signed. It ensures response accuracy and completeness.

TLS effectively protects data in transit for a direct, point-to-point connection but does not guarantee
data integrity for the full connection path between the PEP and the PDP if there are intermediaries,

such as proxies or gateways.

Digital signatures offer important advantages in this context. They provide non-repudiation, allowing
verification that the response genuinely originated from the PDP. Moreover, digital signatures ensure
the integrity of the authorization response, confirming that its contents have not been altered in transit.

11.7 Availability & Denial of Service {#security-avail-dos} }

The PDP SHOULD apply reasonable protections to avoid common attacks tied to request payload
size, the number of requests, invalid JSON, nested JSON attacks, or memory consumption. Rate

limiting is one such way to address such issues.

11.8 Differences between Unsigned and Signed Metadata

Unsigned metadata is integrity protected by use of TLS at the site where it is hosted. This means that
its security is dependent upon the Internet Public Key Infrastructure (PKI) [RFC9525]. Signed
metadata is additionally integrity protected by the JWS signature applied by the issuer, which is not
dependent upon the Internet PKI. When using unsigned metadata, the party issuing the metadata is the
PDP itself. Whereas, when using signed metadata, the party issuing the metadata is represented by the
iss (issuer) claim in the signed metadata. When using signed metadata, applications can make trust
decisions based on the issuer that performed the signing -- information that is not available when

using unsigned metadata. How these trust decisions are made is out of scope for this specification.

11.9 Metadata Caching

Policy Decision Point metadata is retrieved using an HTTP GET request, as specified in 9.2.1 Policy

Decision Point Metadata Request. Normal HTTP caching behaviors apply, meaning that the GET may
retrieve a cached copy of the content, rather than the latest copy. Implementations should utilize HTTP
caching directives such as Cache-Control with max-age, as defined in [RFC7234], to enable caching
of retrieved metadata for appropriate time periods.

12. IANA Considerations

This specification requests IANA to take four actions: the creation of a new protocol registry group
named 'AuthZEN', the establishment of two new registries within this group ('AuthZEN Policy
Decision Point Metadata' and 'AuthZEN Policy Decision Point Capabilities'), the registration of a new
Well-Known URI (‘authzen-configuration'), and the registration of a new URN sub-namespace

(‘authzen").
The following registration procedure is used for the registries established by this specification.

Values are registered on a Specification Required [RFC8126] basis after a two-week review period on

the openid-specs-authzen@lists.openid.net mailing list, following review and approval by one or more

Designated Experts. However, to allow for the allocation of values prior to publication of the final
version of a specification, the Designated Experts may approve registration once they are satisfied that
the specification will be completed and published. However, if the specification is not completed and
published in a timely manner, as determined by the Designated Experts, the Designated Experts may

request that IANA withdraw the registration.

Registration requests sent to the mailing list for review should use an appropriate subject (e.g.,
"Request to register AuthZEN Policy Decision Point Metadata: example").

Within the review period, the Designated Experts will either approve or deny the registration request,
communicating this decision to the review list and IANA. Denials should include an explanation and,
if applicable, suggestions as to how to make the request successful. The ITANA escalation process is

followed when the Designated Experts are not responsive within 14 days.

Criteria that should be applied by the Designated Experts includes determining whether the proposed
registration duplicates existing functionality, determining whether it is likely to be of general
applicability or whether it is useful only for a single application, and whether the registration makes

sense.

IANA must only accept registry updates from the Designated Experts and should direct all requests

for registration to the review mailing list.

It is suggested that multiple Designated Experts be appointed who are able to represent the
perspectives of different applications using this specification, in order to enable broadly-informed
review of registration decisions. In cases where a registration decision could be perceived as creating a
conflict of interest for a particular Expert, that Expert should defer to the judgment of the other
Experts.

The reason for the use of the mailing list is to enable public review of registration requests, enabling
both Designated Experts and other interested parties to provide feedback on proposed registrations.

The reason to allow the Designated Experts to allocate values prior to publication as a final

mailto:openid-specs-authzen@lists.openid.net

specification is to enable giving authors of specifications proposing registrations the benefit of review
by the Designated Experts before the specification is completely done, so that if problems are

identified, the authors can iterate and fix them before publication of the final specification.

12.1 AuthZEN Policy Decision Point Metadata Registry

This specification asks IANA to establish the "AuthZEN Policy Decision Point Metadata" registry
under the registry group "AuthZEN Parameters". The registry records the Policy Decision Point
metadata parameter and a reference to the specification that defines it.

12.1.1 Registry Definition

Registry Name: AuthZEN Policy Decision Point Metadata
Registration Policy: Specification Required per [RFC8126]

Reference: [This Document]

12.1.2 Registration Template

Metadata Name: : The name requested (e.g., "resource"). This name is case-sensitive. Names may not
match other registered names in a case-insensitive manner unless the Designated Experts state that

there is a compelling reason to allow an exception.
Metadata Description: : Brief description of the metadata (e.g., "Resource identifier URL").

Change Controller: : For IETF stream RFCs, list the "IETF". For others, give the name of the
responsible party. Other details (e.g., postal address, email address, home page URI) may also be

included.

Specification Document(s): : Reference to the document or documents that specify the parameter,
preferably including URIs that can be used to retrieve copies of the documents. An indication of the

relevant sections may also be included but is not required.

§ 12.1.3 Initial Registrations

Metadata Name: : policy decision point
Metadata Description: : Base URL of the Policy Decision Point

Change Controller: : OpenID Foundation AuthZEN Working Group : openid-specs-

authzen@lists.openid.net

Specification Document(s): : 9.1.1 Endpoint Parameters of [This Document]

Metadata Name: : access evaluation endpoint
Metadata Description: : URL of the Policy Decision Point's Access Evaluation API endpoint

Change Controller: : OpenID Foundation AuthZEN Working Group : openid-specs-
authzen@lists.openid.net

Specification Document(s): : 9.1.1 Endpoint Parameters of [This Document]

Metadata Name: : access _evaluations endpoint
Metadata Description: : URL of the Policy Decision Point's Access Evaluations API endpoint

Change Controller: : OpenID Foundation AuthZEN Working Group : openid-specs-

authzen@lists.openid.net

Specification Document(s): : 9.1.1 Endpoint Parameters of [This Document]
Metadata Name: : search _subject endpoint
Metadata Description: : URL of the Policy Decision Point's Search API endpoint for Subject entities

Change Controller: : OpenID Foundation AuthZEN Working Group : openid-specs-

authzen(@lists.openid.net

Specification Document(s): : 9.1.1 Endpoint Parameters of [This Document]
Metadata Name: : search resource endpoint
Metadata Description: : URL of the Policy Decision Point's Search API endpoint for Resource entities

Change Controller: : OpenID Foundation AuthZEN Working Group : openid-specs-
authzen@lists.openid.net

Specification Document(s): : 9.1.1 Endpoint Parameters of [This Document]

mailto:openid-specs-authzen@lists.openid.net
mailto:openid-specs-authzen@lists.openid.net
mailto:openid-specs-authzen@lists.openid.net
mailto:openid-specs-authzen@lists.openid.net
mailto:openid-specs-authzen@lists.openid.net
mailto:openid-specs-authzen@lists.openid.net
mailto:openid-specs-authzen@lists.openid.net
mailto:openid-specs-authzen@lists.openid.net
mailto:openid-specs-authzen@lists.openid.net
mailto:openid-specs-authzen@lists.openid.net

Metadata Name: : search_action endpoint
Metadata Description: : URL of the Policy Decision Point's Search API endpoint for Action entities

Change Controller: : OpenID Foundation AuthZEN Working Group : openid-specs-

authzen@lists.openid.net

Specification Document(s): : 9.1.1 Endpoint Parameters of [This Document]

Metadata Name: : capabilities
Metadata Description: : Array of URNs describing specific Policy Decision Point capabilities

Change Controller: : OpenID Foundation AuthZEN Working Group : openid-specs-
authzen@lists.openid.net

Specification Document(s): : 9.1.2 Capabilities Parameters of [This Document]

Metadata Name: : signed metadata
Metadata Description: : JWT containing metadata parameters about the protected resource as claims.

Change Controller: : OpenID Foundation AuthZEN Working Group : openid-specs-

authzen@lists.openid.net

Specification Document(s): : 9.1.3 Signature Parameter of [This Document]

12.2 Well-Known URI Registry

This specification asks IANA to register the well-known URI defined in 9.2 Obtaining Policy
Decision Point Metadata in the IANA "Well-Known URIs" registry [[ANA.well-known-uris].

12.2.1 Registry Contents

URI Suffix: : authzen-configuration
Reference: : [This Document]
Status: : permanent

Change Controller: : OpenID Foundation AuthZEN Working Group : openid-specs-

authzen@lists.openid.net

Related Information: : (none)

mailto:openid-specs-authzen@lists.openid.net
mailto:openid-specs-authzen@lists.openid.net
mailto:openid-specs-authzen@lists.openid.net
mailto:openid-specs-authzen@lists.openid.net
mailto:openid-specs-authzen@lists.openid.net
mailto:openid-specs-authzen@lists.openid.net
mailto:openid-specs-authzen@lists.openid.net
mailto:openid-specs-authzen@lists.openid.net

12.3 AuthZEN Policy Decision Point Capabilities Registry

This specification asks IANA to establish the "AuthZEN Policy Decision Point Capabilities" registry
under the registry group "AuthZEN Parameters". The registry contains PDP-specific capabilities or
features. These URNSs are intended to be used in Policy Decision Point metadata discovery documents

(as described in 9. Policy Decision Point Metadata) to allow a PEP to determine the supported

functionality of a given PDP instance. The content of this registry will be specified by AuthZEN-

compliant PDP vendors that want to declare interoperable capabilities.

12.3.1 Registry Definition

Registry Name: AuthZEN Policy Decision Point Capabilities
Registration Policy: Specification Required per [RFC8126]

Reference: [This Document]

12.3.2 Registration Template

Capability Name: : The name of the capability. This name MUST begin with the colon (":") character.
This name is case-sensitive. Names may not match other registered names in a case-insensitive

manner unless the Designated Experts state that there is a compelling reason to allow an exception.
Capability URN: The URN of the AuthZEN Policy Decision Point Capability.
Capability Description: : Brief description of the capability.

Change Controller: : OpenID Foundation AuthZEN Working Group : openid-specs-

authzen@lists.openid.net

Specification Document(s): : Reference to the document or documents that specify the parameter,
preferably including URIs that can be used to retrieve copies of the documents. An indication of the
relevant sections may also be included but is not required.

mailto:openid-specs-authzen@lists.openid.net
mailto:openid-specs-authzen@lists.openid.net

12.4 Registration of "authzen" URN Sub-namespace

This specification asks IANA to register a new URN sub-namespace within the "IETF URN Sub-
namespace for Registered Protocol Parameter Identifiers" registry defined in [RFC3553].
Registry Name: authzen

Specification: [This Document]

Repository: "AuthZEN Policy Decision Point Capabilities" registry (12.3 AuthZEN Policy Decision
Point Capabilities Registry of [This Document])

Index value: Sub-parameters MUST be specified in UTF-8, using standard URI encoding where
necessary.

A. Terminology

Subject

The user or machine principal for whom an authorization decision is being requested.
Resource

The target of the request; the resource about which the Authorization API is being made.
Action

The operation the Subject has attempted on the Resource in an Authorization API call.
Context

The environmental or contextual attributes for this request.

Decision

The value of the evaluation decision made by the PDP: true for "allow", false for "deny".
PDP

Policy Decision Point. The component or system that provides authorization decisions over the

network interface defined here as the Authorization API.

PEP

Policy Enforcement Point. The component or system that requests decisions from the PDP and

enforces access to specific requests based on the decisions obtained from the PDP.

B. Acknowledgements

This template uses extracts from templates written by Pekka Savola, Elwyn Davies and Henrik
Levkowetz.

C. Index

C.1 Terms defined by this specification

Action 8A. PDP §A.

Context 8A. PEP 8A.

Decision §A. Resource §A.
Subject §A.

C.2 Terms defined by reference

D. References

D.1 Normative references

[TANA.well-known-uris]
IANA "Well-Known URIs" registry. 2010-01-20. URL: https://www.iana.org/assignments/well-

known-uris/well-known-uris.xhtml

[RFC2119]
Key words for use in RFCs to Indicate Requirement Levels. S. Bradner. IETF. March 1997. Best

Current Practice. URL: https://www.rfc-editor.org/rfc/rfc2119

https://www.iana.org/assignments/well-known-uris/well-known-uris.xhtml
https://www.iana.org/assignments/well-known-uris/well-known-uris.xhtml
https://www.iana.org/assignments/well-known-uris/well-known-uris.xhtml
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc2119

[RFC3339]
Date and Time on the Internet: Timestamps. G. Klyne; C. Newman. IETF. July 2002. Proposed

Standard. URL: https://www.rfc-editor.org/rfc/rfc3339

[RFC3553]
An IETF URN Sub-namespace for Registered Protocol Parameters. M. Mealling; L. Masinter; T.

Hardie; G. Klyne. IETF. June 2003. Best Current Practice. URL: https://www.rfc-
editor.org/rfc/rfc3553

[RFC7515]
JSON Web Signature (JWS). M. Jones; J. Bradley; N. Sakimura. IETF. May 2015. Proposed
Standard. URL: https://www.rfc-editor.org/rfc/rfc7515

[RFC7519]
JSON Web Token (JWT). M. Jones; J. Bradley; N. Sakimura. IETF. May 2015. Proposed

Standard. URL: https://www.rfc-editor.org/rfc/rfc7519

[RFC8174]
Ambiguity of Uppercase vs Lowercase in REC 2119 Key Words. B. Leiba. IETF. May 2017. Best

Current Practice. URL: https://www.rfc-editor.org/rfc/rfc8174

[RFC8259]
The JavaScript Object Notation (JSON) Data Interchange Format. T. Bray, Ed. IETF. December

2017. Internet Standard. URL: https://www.rfc-editor.org/rfc/rfc8259

[RFC8615]
Well-Known Uniform Resource Identifiers (URIs). M. Nottingham. IETF. May 2019. Proposed

Standard. URL: https://www.rfc-editor.org/rfc/rfc8615

[RFC9110]
HTTP Semantics. R. Fielding, Ed.; M. Nottingham, Ed.; J. Reschke, Ed. IETF. June 2022.

Internet Standard. URL: https://httpwg.org/specs/rfc9110.html

D.2 Informative references

[ADR]
API Design Rules. Jasper Roes; Joost Farla. Logius. URL:

https://gitdocumentatie.logius.nl/publicatie/api/adr/2.0

[JSON-LD11]
JSON-LD 1.1. Gregg Kellogg; Pierre-Antoine Champin; Dave Longley. W3C. 16 July 2020.

W3C Recommendation. URL: https://www.w3.org/TR/json-1d11/

[MIM]
Metamodel Informatie Modellering. 13 juni 2024. URL:
https://docs.geostandaarden.nl/mim/mim/

[NIST.SP.800-162]
Guide to Attribute Based Access Control (ABAC) Definition and Considerations . Vincent C. Hu;

David Ferraiolo; Rick Kuhn; Adam Schnitzer; Kenneth Sandlin; Robert Miller; Karen Scarfone.

https://www.rfc-editor.org/rfc/rfc3339
https://www.rfc-editor.org/rfc/rfc3339
https://www.rfc-editor.org/rfc/rfc3553
https://www.rfc-editor.org/rfc/rfc3553
https://www.rfc-editor.org/rfc/rfc3553
https://www.rfc-editor.org/rfc/rfc7515
https://www.rfc-editor.org/rfc/rfc7515
https://www.rfc-editor.org/rfc/rfc7519
https://www.rfc-editor.org/rfc/rfc7519
https://www.rfc-editor.org/rfc/rfc8174
https://www.rfc-editor.org/rfc/rfc8174
https://www.rfc-editor.org/rfc/rfc8259
https://www.rfc-editor.org/rfc/rfc8259
https://www.rfc-editor.org/rfc/rfc8615
https://www.rfc-editor.org/rfc/rfc8615
https://httpwg.org/specs/rfc9110.html
https://httpwg.org/specs/rfc9110.html
https://gitdocumentatie.logius.nl/publicatie/api/adr/2.0
https://gitdocumentatie.logius.nl/publicatie/api/adr/2.0
https://www.w3.org/TR/json-ld11/
https://www.w3.org/TR/json-ld11/
https://docs.geostandaarden.nl/mim/mim/
https://docs.geostandaarden.nl/mim/mim/
https://doi.org/10.6028/NIST.SP.800-162

January 2014 . URL: https://doi.org/10.6028/NIST.SP.800-162

[RFC2617]
HTTP Authentication: Basic and Digest Access Authentication. J. Franks; P. Hallam-Baker; J.

Hostetler; S. Lawrence; P. Leach; A. Luotonen; L. Stewart. IETF. June 1999. Draft Standard.
URL: https://www.rfc-editor.org/rfc/rfc2617

[RFC6749]
The OAuth 2.0 Authorization Framework. D. Hardt, Ed. IETF. October 2012. Proposed Standard.

URL: https://www.rfc-editor.org/rfc/rfc6749

[RFC7234]
Hypertext Transfer Protocol (HTTP/1.1): Caching. R. Fielding, Ed.; M. Nottingham, Ed.; J.

Reschke, Ed. IETF. June 2014. Proposed Standard. URL: https://httpwg.org/specs/rfc7234.html

[RFC7493]
The I-JSON Message Format. T. Bray, Ed. IETF. March 2015. Proposed Standard. URL:

https://www.rfc-editor.org/rfc/rfc7493

[RFC8126]
Guidelines for Writing an IANA Considerations Section in RFCs. M. Cotton; B. Leiba; T. Narten.

IETF. June 2017. Best Current Practice. URL: https://www.rfc-editor.org/rfc/rfc8126

[RFC9525]
Service Identity in TLS. P. Saint-Andre; R. Salz. IETF. November 2023. Proposed Standard.

URL.: https://www.rfc-editor.org/rfc/rfc9525

[SAML2-CORE]
Assertions and Protocols for SAML V2.0. Scott Cantor; John Kemp; Rob Philpott; Eve Maler. 15

March 2005. URL: http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-0s.pdf

[trace-context-1]
Trace Context. Sergey Kanzhelev; Morgan McLean; Alois Reitbauer; Bogdan Drutu; Nik
Molnar; Yuri Shkuro. W3C. 23 November 2021. W3C Recommendation. URL:

https://www.w3.org/TR/trace-context-1/

[vc-data-model-2.0]
Verifiable Credentials Data Model v2.0. Ivan Herman; Michael Jones; Manu Sporny; Ted

Thibodeau Jr; Gabe Cohen. W3C. 15 May 2025. W3C Recommendation. URL:
https://www.w3.org/TR/vc-data-model-2.0/

[XACML20]
OASIS eXtensible Access Control Markup Language (XACML) Version 2.0. Tim Moses. 1

February 2005. URL: http://docs.oasis-open.org/xacml/2.0/access _control-xacml-2.0-core-spec-

os.pdf

https://doi.org/10.6028/NIST.SP.800-162
https://www.rfc-editor.org/rfc/rfc2617
https://www.rfc-editor.org/rfc/rfc2617
https://www.rfc-editor.org/rfc/rfc6749
https://www.rfc-editor.org/rfc/rfc6749
https://httpwg.org/specs/rfc7234.html
https://httpwg.org/specs/rfc7234.html
https://www.rfc-editor.org/rfc/rfc7493
https://www.rfc-editor.org/rfc/rfc7493
https://www.rfc-editor.org/rfc/rfc8126
https://www.rfc-editor.org/rfc/rfc8126
https://www.rfc-editor.org/rfc/rfc9525
https://www.rfc-editor.org/rfc/rfc9525
http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf
http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf
https://www.w3.org/TR/trace-context-1/
https://www.w3.org/TR/trace-context-1/
https://www.w3.org/TR/vc-data-model-2.0/
https://www.w3.org/TR/vc-data-model-2.0/
http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf
http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf
http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf

