=
@]
or—
[%2]
—
(<]
>
=
o
=
3]
=
=3
wn
=
o
O
1
o
jae!
[3°]
o
=
[3°]
ol
9]
wn
=3
o=
oo
@)
—

FSC - Logging 1.1.0

Logius Standard
Consultation version January 19, 2026

This version:
https://gitdocumentatie.logius.nl/publicatie/fsc/logging/1.1.0/

Latest published version:
https://gitdocumentatie.logius.nl/publicatie/fsc/logging/

Latest editor's draft:
https://logius-standaarden.github.io/fsc-logging/

Previous version:
https://gitdocumentatie.logius.nl/publicatie/fsc/logging/1.0.0/

Editor:
Logius (Logius)
Authors:

Eelco Hotting (Hotting IT), Email
Ronald Koster (PhillyShell), Email
Henk van Maanen (AceWorks), Email
Niels Dequeker (ND Software), Email
Edward van Gelderen (vanG IT), Email
Pim Gaemers (Apily), Email

Participate:
GitHub Logius-standaarden/fsc-loggin

File an issue

Commit history
Pull requests

This document is also available in these non-normative format: PDF

@ This document is licensed under
Creative Commons Attribution 4.0 International Public License

Status of This Document

This is a proposed recommendation approved by TO. Comments regarding this document may be
sent to api@logius.nl

https://www.logius.nl/onze-dienstverlening/standaarden
https://gitdocumentatie.logius.nl/publicatie/fsc/logging/1.1.0/
https://gitdocumentatie.logius.nl/publicatie/fsc/logging/
https://logius-standaarden.github.io/fsc-logging/
https://gitdocumentatie.logius.nl/publicatie/fsc/logging/1.0.0/
https://github.com/Logius-standaarden
mailto:rfc@hotting.it
mailto:rfc@phillyshell.nl
mailto:henk.van.maanen@aceworks.nl
mailto:niels@nd-software.be
mailto:e.van.gelderen@vang.nl
mailto:pim.gaemers@apily.dev
https://github.com/Logius-standaarden/fsc-logging/
https://github.com/Logius-standaarden/fsc-logging/issues/
https://github.com/Logius-standaarden/fsc-logging/commits/
https://github.com/Logius-standaarden/fsc-logging/pulls/
http://localhost:8080/fsc-logging-1.1.0.pdf
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode

Table of Contents

1.1
1.2
1.3
1.4

2.1
2.2
2.3

3.1
3.1.1
3.2
3.2.1
3.2.1.1
3.2.2
3.3

3.3.1
33.1.1

3.3.1.2

3.3.1.3

3.4

34.1
3.4.1.1

34.1.2

3413

Status of This Document
Conformance
Abstract

Introduction

Purpose

Overall Operation of Logging
Terminology

Profiles

Architecture
Writing to the TransactionLog
Providing the TransactionLog

Connecting log records

Specification
Log record
Access token
Manager
Behavior
Providing TransactionL.og records
Interface
Inway
Behavior
Writing to the TransactionL.og
Delegation
Error response
Outway
Behavior
Writing to the TransactionLog
Delegation

Error response
List of Figures

References

Normative references

Conformance

As well as sections marked as non-normative, all authoring guidelines, diagrams, examples, and

notes in this specification are non-normative. Everything else in this specification is normative.

The key words MAY, MUST, RECOMMENDED, and REQUIRED in this document are to be
interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
capitals, as shown here.

Abstract

Logging is an extension on the Federated Service Connectivity (FSC) standard FSC Core. It can
only be used in addition to the FSC Core specification and if applicable the Delegation extension.
The purpose of the Logging extension is to provide insights into transactions performed with
services inside a FSC Group. The extension ensures Log records are uniformly described, stored
and can be exchanged between Peers. The Logging extensions contains descriptions of the contents
of Log Records, as well as a manner for other Peers to request L.og records of transactions they

have participated in as a Peer.

In addition, this extension also described the format of uniquely identifying transactions occurring

within an FSC Group. Which also can be used to establish an audit trail.

1. Introduction

The Logging specification is an extension of the Federated Service Connectivity (FSC) Core
specification. This extension describes how Peers should log requests made to Services and how

Peers should provide log records to other Peers.

1.1 Purpose

Organizations should handle data in a transparent and responsible manner, partly this means that
each organization should keep a log of data handled by the organization and provide insight into
this log to relevant parties. FSC aims to uniform the logging of API requests to lay the groundwork
for more extensive logging requirements like GDRP. As it is impossible to create a logging
standard that will satisfy the requirements of each individual organization, FSC will focus on

https://www.rfc-editor.org/info/bcp14
https://gitdocumentatie.logius.nl/publicatie/fsc/core/

logging the properties of an API request of which FSC can guarantee its authenticity e.g. the Peer
making the request, the Peer receiving the request, the Service that is being called etc.

Organizations can use this as a foundation to create a log that will satisfy all their needs.

1.2 Overall Operation of Logging

A client makes a request to a Service of the Group. The Outway will receive this request and write
a log record with a unique ID before proxying the request to the Inway offering the Service. The
Outway will include the unique ID in the request made to the Inway. The Inway also writes a log

record containing the same unique ID before proxying the request to the Service.

Peers can request log records from other Peers. Peers provide only log records in which the

requesting Peer is an active party.

Log records between Peers can be matched using the unique ID.

1.3 Terminology

This section lists terms (#header) and abbreviations that are used in this document. This document
assumes that the reader is familiar with the Terminology of FSC Core.

Transaction:

A request made by a Peer to a Service.

TransactionLog:

A Peers log of Transactions. This log can contain both incoming and outgoing requests.
TransactionlD:

A unique identifier which can be used to trace a Transaction between Peers.

1.4 Profiles

When using the Logging Extension the following additions MUST be made to the FSC Profile:

1. Determine the expiration date for log records

https://gitdocumentatie.logius.nl/publicatie/fsc/core/#profiles

In addition, the mandatory decisions a Profile MAY also contain additional agreements or
restrictions within the Group. These are not technically required for the operation of FSC Logging
extension, but can become mandatory within a Group. For example an additional set of rules to
comply with local legislation. Below are a few examples listed of these additional decisions for

inspirational purposes:

1. formatting restrictions on the TransactionID, for example UUIDv7

2. Architecture

2.1 Writing to the TransactionLog

A Peer makes an HTTP request to a Service. The Outway will generate a unique ID for the
Transaction and write a record to the TransactionL.og before proxying the request to the Inway. The
Inway will parse the unique ID from the request and also write a record containing the unique ID to

its own TransactionL.og before proxying the request to the Service.

The storage of the log record MAY be implemented both synchronously or asynchronously. For
both implementations it is REQUIRED to receive confirmation that the log record is persisted
in order to continue. For example, you can introduce a message broker to improve

performance. The message broker will ensure the records are persisted later on.

Logginc

Write to the TransactionLog

Consumer Provider
TransactionLog TransactionLog
T) T T i T
I I i I
| 1 Request | N | ! !
" T > I] I
: : | 2 Generate a Transaction|D i i
| | |
I I ! I I
! L3 Write record ! ! !
| with the TransactioniD 1 i
) I I
| | 4 Record received o | |
I i I I
| | | 5 Request | |
l | 1 = with the TransactionID in an HTTP header 1 i
i I r > I
1 i 1 | 6 Parse TransactionID from request : I
1 | . 1 |
I I I i . I
! ! 7 Write record
. | , 1 ¥ with the TransactionlD o |
I I I I Eal] I
| i _ 8 Record received i
I I I Dl 1 I
1 | | | 9 Request ! !
I | I 1~ with the TransactionID in an HTTP header
I I I T T 1
1 1 1 L 10 Response 1 1
i I I < r]
0 1 |11 Response | |
I I = I I
1 Responée 1 : :

Figure 1 Write to the TransactionLog

1. The client sends a request to the Outway.

2. The Outway generates a unique ID to be used as the TransactionID.

3. The Outway writes the record for transaction in the TransactionLog.

4. The TransactionLog confirms to the Outway that the record has been received.

5. The Outway proxies the request to the Inway and includes the TransactionID in the HTTP
header Fsc-Transaction-1Id.

6. The Inway reads the unique ID from the request.
7. The Inway writes the record for transaction in the TransactionLog.
8. The TransactionLog confirms to the Inway that the record has been received.

9. The Inway proxies the request to the Service and includes the TransactionID in an HTTP

header.
10. The Service returns the response to the Inway.
11. The Inway return the response to the Outway.

12. The Outway returns the response to the client. The response includes the TransactionID in an
HTTP header.

2.2 Providing the TransactionLog

A Peer provides the TransactionLog to other Peers. A Peer can request the records of the
TransactionLog through the Manager of a Peer. The Manager returns only logs records that involve

the Peer requesting the log records.

Logging
Provide the TransactionLog

Peer A Peer B

|
' 1 Request TransactionLog _

:(2 Return TransactionLog
[|

I

Figure 2 Provide the TransactionLog

1. Peer A requests the TransactionLog from Peer B.

2. Peer B returns the TransactionL.og records that contain Peer B.

2.3 Connecting log records

Each log record will have a TransactionID which is the unique ID for the Transaction. This ID is
used to link the log records of a Transaction made across multiple Peers. It is RECOMMENDED
to also add the TransactionID to logs created by other applications involved with the Transaction.
E.g. the client making the request or the API offered as Service. This will enable Peers to provide a
detailed audit trail of a request.

3. Specification

3.1 Log record

The fields that a log record MUST contain are described in the OpenAPI Specification

3.1.1 Access token

Data from the access token MUST be used to fill the following fields of the log record:

accessToken.gth --> logRecord.grant hash accessToken.sub -->
logRecord.source.outway peer id accessToken.iss -->
logRecord.destination.service peer id accessToken.svc -->
logRecord.service name

in case of a Peer making a request on behalf of another Peer an additional field MUST be set:
accessToken.cdi --> logRecord.source.delegator peer_ id

in case of a request made to a Service offered on behalf of another Peer and additional field MUST
be set:

accessToken.pdi --> logRecord.destination.delegator peer id

http://localhost:8080/logging.yaml

3.2 Manager

The FSC Log specification requires the Manager described in Core to be implemented.

3.2.1 Behavior

3.2.1.1 Providing TransactionLog records

The Manager MUST be able to provide log records to other Peers.
The Manager MUST only return log records which match any of the following criteria:
e The Peer ID of the X.509 certificate used by the Peer requesting the log records matches the

value of the field LlogRecord.source.outway peer id

e The Peer ID of the X.509 certificate used by the Peer requesting the log records matches the
value of the field logRecord.destination.service peer id

e The Peer ID of the X.509 certificate used by the Peer requesting the log records matches the
value of the field LlogRecord.source.delegator peer id

e The Peer ID of the X.509 certificate used by the Peer requesting the TransactionL.og records
matches the value of the field logRecord.destination.delegator peer id

3.2.2 Interface

The Manager MUST implement the interface described in the OpenAPI Specification

3.3 Inway

The FSC Log specification requires the Inway described in Core to be implemented.

http://localhost:8080/logging.yaml

§ 3.3.1 Behavior

§ 3.3.1.1 Writing to the TransactionLog

The Inway MUST write a record to the TransactionLog for each received request for a Service.

The Inway MUST use the TransactionID provided by the Outway in the HTTP header Fsc-
Transaction-Id.

The Inway MUST add the TransactionID to the request sent to the Service using the HTTP header
Fsc-Transaction-1Id.

The TransactionL.og record MUST contain the fields described in the log record section

The Inway MUST deny the request if the record to the TransactionLog could not be written.

§ 3.3.1.2 Delegation

When the requesting Peer is making the request on behalf of another Peer the source of a log record

MUST contain a sourceDelegated object as described in the OpenAPI Specification.

When the Service is published on behalf of another Peer the destination of a log record MUST

contain a destinationDelegated as described in the OpenAPI Specification.

§ 3.3.1.3 Error response

This extension introduces a new error code for the Inway:

HTTP

Error code Description
status code

The TransactionLog record could
TRANSACTION_LOG_WRITE_ERROR 500
not be created

The format of the Fsc-
INVALID LLOG_RECORD ID 400 Transaction-Id header is not
valid

http://localhost:8080/logging.yaml
http://localhost:8080/logging.yaml

HTTP

Error code Description
status code

The the Fsc-Transaction-Id

MISSING_LOG_RECORD_ID 400 .
header is missing

3.4 Outway

The FSC Log specification requires the Outway described in Core to be implemented.

3.4.1 Behavior

3.4.1.1 Writing to the TransactionLog

The Outway MUST write a record to the TransactionLog for each request that will be sent to the

Inway.

The Outway MUST create a TransactionID which MUST be unique for the transaction, the format

is determined in a FSC Profile.

The Outway MUST add the TransactionlD to the request sent to the Inway using the HT TP header
Fsc-Transaction-Id.

The TransactionLog record MUST contain the fields described in the TransactionLog record

section
The Outway MUST deny the request if the record to the TransactionLog could not be written.

The Outway MUST add the TransactionID to the response sent to the Client using the HTTP
header Fsc-Transaction-Id.

3.4.1.2 Delegation

When the requesting Peer is making the request on behalf of another Peer the source of a log record
MUST contain a sourceDelegated object as described in the OpenAPI Specification.

http://localhost:8080/logging.yaml

When the Service is published on behalf of another Peer the destination of a log record MUST
contain a destinationDelegated as described in the OpenAPI Specification.

§ 3.4.1.3 Error response

This extension introduces a new error code for the Outway:

HTTP _
Error code Description
status code

The TransactionLog record could
TRANSACTION_LOG_WRITE_ERROR 500
not be created

The format of the Fsc-

INVALID _LLOG_RECORD ID 400 Transaction-Id header is not
valid
The the Fsc-Transaction-Id
MISSING_LOG_RECORD ID 400

header is missing

4. List of Figures

Figure 1 Write to the TransactionL.og

Figure 2 Provide the TransactionLog

A. References

A.1 Normative references

[RFC2119]
Key words for use in RFCs to Indicate Requirement Levels. S. Bradner. IETF. March 1997.
Best Current Practice. URL: https://www.rfc-editor.org/rfc/rfc2119

[RFC8174]
Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words. B. Leiba. IETF. May 2017.

Best Current Practice. URL: https://www.rfc-editor.org/rfc/rfc8174

-

http://localhost:8080/logging.yaml
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc8174
https://www.rfc-editor.org/rfc/rfc8174

