
FSC - Logging 1.1.0
Logius Standard
Consultation version January 19, 2026

This version:
https://gitdocumentatie.logius.nl/publicatie/fsc/logging/1.1.0/

Latest published version:
https://gitdocumentatie.logius.nl/publicatie/fsc/logging/

Latest editor's draft:
https://logius-standaarden.github.io/fsc-logging/

Previous version:
https://gitdocumentatie.logius.nl/publicatie/fsc/logging/1.0.0/

Editor:
Logius (Logius)

Authors:
Eelco Hotting (Hotting IT), Email
Ronald Koster (PhillyShell), Email
Henk van Maanen (AceWorks), Email
Niels Dequeker (ND Software), Email
Edward van Gelderen (vanG IT), Email
Pim Gaemers (Apily), Email

Participate:
GitHub Logius-standaarden/fsc-logging
File an issue
Commit history
Pull requests

This document is also available in these non-normative format: PDF

This document is licensed under
Creative Commons Attribution 4.0 International Public License

Status of This Document

This is a proposed recommendation approved by TO. Comments regarding this document may be
sent to api@logius.nl

Lo
gi

us
 S

ta
nd

ar
d

- C
on

su
lta

tio
n

ve
rs

io
n

https://www.logius.nl/onze-dienstverlening/standaarden
https://gitdocumentatie.logius.nl/publicatie/fsc/logging/1.1.0/
https://gitdocumentatie.logius.nl/publicatie/fsc/logging/
https://logius-standaarden.github.io/fsc-logging/
https://gitdocumentatie.logius.nl/publicatie/fsc/logging/1.0.0/
https://github.com/Logius-standaarden
mailto:rfc@hotting.it
mailto:rfc@phillyshell.nl
mailto:henk.van.maanen@aceworks.nl
mailto:niels@nd-software.be
mailto:e.van.gelderen@vang.nl
mailto:pim.gaemers@apily.dev
https://github.com/Logius-standaarden/fsc-logging/
https://github.com/Logius-standaarden/fsc-logging/issues/
https://github.com/Logius-standaarden/fsc-logging/commits/
https://github.com/Logius-standaarden/fsc-logging/pulls/
http://localhost:8080/fsc-logging-1.1.0.pdf
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode

1.
1.1
1.2
1.3
1.4

2.
2.1
2.2
2.3

3.
3.1
3.1.1

3.2
3.2.1
3.2.1.1

3.2.2

3.3
3.3.1
3.3.1.1

3.3.1.2

3.3.1.3

3.4
3.4.1
3.4.1.1

3.4.1.2

3.4.1.3

4.

A.
A.1

Table of Contents

Status of This Document

Conformance

Abstract

Introduction
Purpose
Overall Operation of Logging
Terminology
Profiles

Architecture
Writing to the TransactionLog
Providing the TransactionLog
Connecting log records

Specification
Log record

Access token

Manager
Behavior

Providing TransactionLog records

Interface

Inway
Behavior

Writing to the TransactionLog

Delegation

Error response

Outway
Behavior

Writing to the TransactionLog

Delegation

Error response

List of Figures

References
Normative references

As well as sections marked as non-normative, all authoring guidelines, diagrams, examples, and
notes in this specification are non-normative. Everything else in this specification is normative.

The key words MAY, MUST, RECOMMENDED, and REQUIRED in this document are to be
interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
capitals, as shown here.

Abstract

Logging is an extension on the Federated Service Connectivity (FSC) standard FSC Core. It can
only be used in addition to the FSC Core specification and if applicable the Delegation extension.
The purpose of the Logging extension is to provide insights into transactions performed with
services inside a FSC Group. The extension ensures Log records are uniformly described, stored
and can be exchanged between Peers. The Logging extensions contains descriptions of the contents
of Log Records, as well as a manner for other Peers to request Log records of transactions they
have participated in as a Peer.

In addition, this extension also described the format of uniquely identifying transactions occurring
within an FSC Group. Which also can be used to establish an audit trail.

The Logging specification is an extension of the Federated Service Connectivity (FSC) Core
specification. This extension describes how Peers should log requests made to Services and how
Peers should provide log records to other Peers.

Organizations should handle data in a transparent and responsible manner, partly this means that
each organization should keep a log of data handled by the organization and provide insight into
this log to relevant parties. FSC aims to uniform the logging of API requests to lay the groundwork
for more extensive logging requirements like GDRP. As it is impossible to create a logging
standard that will satisfy the requirements of each individual organization, FSC will focus on

Conformance§

1. Introduction§

1.1 Purpose§

https://www.rfc-editor.org/info/bcp14
https://gitdocumentatie.logius.nl/publicatie/fsc/core/

logging the properties of an API request of which FSC can guarantee its authenticity e.g. the Peer
making the request, the Peer receiving the request, the Service that is being called etc.
Organizations can use this as a foundation to create a log that will satisfy all their needs.

A client makes a request to a Service of the Group. The Outway will receive this request and write
a log record with a unique ID before proxying the request to the Inway offering the Service. The
Outway will include the unique ID in the request made to the Inway. The Inway also writes a log
record containing the same unique ID before proxying the request to the Service.

Peers can request log records from other Peers. Peers provide only log records in which the
requesting Peer is an active party.

Log records between Peers can be matched using the unique ID.

This section lists terms (#header) and abbreviations that are used in this document. This document
assumes that the reader is familiar with the Terminology of FSC Core.

Transaction:

A request made by a Peer to a Service.

TransactionLog:

A Peers log of Transactions. This log can contain both incoming and outgoing requests.

TransactionID:

A unique identifier which can be used to trace a Transaction between Peers.

When using the Logging Extension the following additions MUST be made to the FSC Profile:

1. Determine the expiration date for log records

1.2 Overall Operation of Logging§

1.3 Terminology§

1.4 Profiles§

https://gitdocumentatie.logius.nl/publicatie/fsc/core/#profiles

In addition, the mandatory decisions a Profile MAY also contain additional agreements or
restrictions within the Group. These are not technically required for the operation of FSC Logging
extension, but can become mandatory within a Group. For example an additional set of rules to
comply with local legislation. Below are a few examples listed of these additional decisions for
inspirational purposes:

1. formatting restrictions on the TransactionID, for example UUIDv7

A Peer makes an HTTP request to a Service. The Outway will generate a unique ID for the
Transaction and write a record to the TransactionLog before proxying the request to the Inway. The
Inway will parse the unique ID from the request and also write a record containing the unique ID to
its own TransactionLog before proxying the request to the Service.

The storage of the log record MAY be implemented both synchronously or asynchronously. For
both implementations it is REQUIRED to receive confirmation that the log record is persisted
in order to continue. For example, you can introduce a message broker to improve
performance. The message broker will ensure the records are persisted later on.

Write to the TransactionLog

Consumer Provider

Client TransactionLog Outway Inway TransactionLog Service

1 Request

2 Generate a TransactionID

3 Write record
with the TransactionID

4 Record received

5 Request
with the TransactionID in an HTTP header

6 Parse TransactionID from request

7 Write record
with the TransactionID

8 Record received

9 Request
with the TransactionID in an HTTP header

1 0 Response

1 1 Response

1 2 Response
with the TransactionID in an HTTP header

Logging

Figure 1 Write to the TransactionLog

2. Architecture§

2.1 Writing to the TransactionLog§

1. The client sends a request to the Outway.

2. The Outway generates a unique ID to be used as the TransactionID.

3. The Outway writes the record for transaction in the TransactionLog.

4. The TransactionLog confirms to the Outway that the record has been received.

5. The Outway proxies the request to the Inway and includes the TransactionID in the HTTP
header Fsc-Transaction-Id.

6. The Inway reads the unique ID from the request.

7. The Inway writes the record for transaction in the TransactionLog.

8. The TransactionLog confirms to the Inway that the record has been received.

9. The Inway proxies the request to the Service and includes the TransactionID in an HTTP
header.

10. The Service returns the response to the Inway.

11. The Inway return the response to the Outway.

12. The Outway returns the response to the client. The response includes the TransactionID in an
HTTP header.

A Peer provides the TransactionLog to other Peers. A Peer can request the records of the
TransactionLog through the Manager of a Peer. The Manager returns only logs records that involve
the Peer requesting the log records.

Provide the TransactionLog

Peer A Peer B

Client Manager

1 Request TransactionLog

2 Return TransactionLog

Logging

Figure 2 Provide the TransactionLog

1. Peer A requests the TransactionLog from Peer B.

2. Peer B returns the TransactionLog records that contain Peer B.

2.2 Providing the TransactionLog§

Each log record will have a TransactionID which is the unique ID for the Transaction. This ID is
used to link the log records of a Transaction made across multiple Peers. It is RECOMMENDED
to also add the TransactionID to logs created by other applications involved with the Transaction.
E.g. the client making the request or the API offered as Service. This will enable Peers to provide a
detailed audit trail of a request.

The fields that a log record MUST contain are described in the OpenAPI Specification

Data from the access token MUST be used to fill the following fields of the log record:

accessToken.gth --> logRecord.grant_hash accessToken.sub -->
logRecord.source.outway_peer_id accessToken.iss -->
logRecord.destination.service_peer_id accessToken.svc -->
logRecord.service_name

in case of a Peer making a request on behalf of another Peer an additional field MUST be set:

accessToken.cdi --> logRecord.source.delegator_peer_id

in case of a request made to a Service offered on behalf of another Peer and additional field MUST
be set:

accessToken.pdi --> logRecord.destination.delegator_peer_id

2.3 Connecting log records§

3. Specification§

3.1 Log record§

3.1.1 Access token§

http://localhost:8080/logging.yaml

The FSC Log specification requires the Manager described in Core to be implemented.

The Manager MUST be able to provide log records to other Peers.

The Manager MUST only return log records which match any of the following criteria:

The Peer ID of the X.509 certificate used by the Peer requesting the log records matches the
value of the field logRecord.source.outway_peer_id

The Peer ID of the X.509 certificate used by the Peer requesting the log records matches the
value of the field logRecord.destination.service_peer_id

The Peer ID of the X.509 certificate used by the Peer requesting the log records matches the
value of the field logRecord.source.delegator_peer_id

The Peer ID of the X.509 certificate used by the Peer requesting the TransactionLog records
matches the value of the field logRecord.destination.delegator_peer_id

The Manager MUST implement the interface described in the OpenAPI Specification

The FSC Log specification requires the Inway described in Core to be implemented.

3.2 Manager§

3.2.1 Behavior§

3.2.1.1 Providing TransactionLog records§

3.2.2 Interface§

3.3 Inway§

http://localhost:8080/logging.yaml

The Inway MUST write a record to the TransactionLog for each received request for a Service.

The Inway MUST use the TransactionID provided by the Outway in the HTTP header Fsc-
Transaction-Id.

The Inway MUST add the TransactionID to the request sent to the Service using the HTTP header
Fsc-Transaction-Id.

The TransactionLog record MUST contain the fields described in the log record section

The Inway MUST deny the request if the record to the TransactionLog could not be written.

When the requesting Peer is making the request on behalf of another Peer the source of a log record
MUST contain a sourceDelegated object as described in the OpenAPI Specification.

When the Service is published on behalf of another Peer the destination of a log record MUST
contain a destinationDelegated as described in the OpenAPI Specification.

This extension introduces a new error code for the Inway:

Error code
HTTP
status code

Description

TRANSACTION_LOG_WRITE_ERROR 500
The TransactionLog record could
not be created

INVALID_LOG_RECORD_ID 400
The format of the Fsc-
Transaction-Id header is not
valid

3.3.1 Behavior§

3.3.1.1 Writing to the TransactionLog§

3.3.1.2 Delegation§

3.3.1.3 Error response§

http://localhost:8080/logging.yaml
http://localhost:8080/logging.yaml

Error code
HTTP
status code

Description

MISSING_LOG_RECORD_ID 400
The the Fsc-Transaction-Id
header is missing

The FSC Log specification requires the Outway described in Core to be implemented.

The Outway MUST write a record to the TransactionLog for each request that will be sent to the
Inway.

The Outway MUST create a TransactionID which MUST be unique for the transaction, the format
is determined in a FSC Profile.

The Outway MUST add the TransactionID to the request sent to the Inway using the HTTP header
Fsc-Transaction-Id.

The TransactionLog record MUST contain the fields described in the TransactionLog record
section

The Outway MUST deny the request if the record to the TransactionLog could not be written.

The Outway MUST add the TransactionID to the response sent to the Client using the HTTP
header Fsc-Transaction-Id.

When the requesting Peer is making the request on behalf of another Peer the source of a log record
MUST contain a sourceDelegated object as described in the OpenAPI Specification.

3.4 Outway§

3.4.1 Behavior§

3.4.1.1 Writing to the TransactionLog§

3.4.1.2 Delegation§

http://localhost:8080/logging.yaml

When the Service is published on behalf of another Peer the destination of a log record MUST
contain a destinationDelegated as described in the OpenAPI Specification.

This extension introduces a new error code for the Outway:

Error code
HTTP
status code

Description

TRANSACTION_LOG_WRITE_ERROR 500
The TransactionLog record could
not be created

INVALID_LOG_RECORD_ID 400
The format of the Fsc-
Transaction-Id header is not
valid

MISSING_LOG_RECORD_ID 400
The the Fsc-Transaction-Id
header is missing

Figure 1 Write to the TransactionLog

Figure 2 Provide the TransactionLog

[RFC2119]
Key words for use in RFCs to Indicate Requirement Levels. S. Bradner. IETF. March 1997.
Best Current Practice. URL: https://www.rfc-editor.org/rfc/rfc2119

[RFC8174]
Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words. B. Leiba. IETF. May 2017.
Best Current Practice. URL: https://www.rfc-editor.org/rfc/rfc8174

↑

3.4.1.3 Error response§

4. List of Figures§

A. References§

A.1 Normative references§

http://localhost:8080/logging.yaml
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc8174
https://www.rfc-editor.org/rfc/rfc8174

