
NL GOV Assurance profile for OAuth
2.0 1.2.0
Logius Standard
Consultation version July 18, 2025

This version:
https://gitdocumentatie.logius.nl/publicatie/api/oauth/1.2.0/

Latest published version:
https://gitdocumentatie.logius.nl/publicatie/api/oauth/

Latest editor's draft:
https://logius-standaarden.github.io/OAuth-NL-profiel/

Previous version:
https://gitdocumentatie.logius.nl/publicatie/api/oauth/v1.1.0/

Editor:
Logius Standaarden (Logius)

Authors:
Jaron Azaria (Logius)
Martin Borgman (Kadaster)
Marc Fleischeuers (Kennisnet)
Alexander Green (Logius)
Peter Haasnoot (Logius)
Heiko Hudig (Logius)
Martin van der Plas (Logius)
Stas Mironov (Logius)
Leon van der Ree (Logius)
Bob te Riele (RvIG)
Remco Schaar (Logius)
Frank Terpstra (Geonovum)
Jan Jaap Zoutendijk (Rijkswaterstaat)

Participate:
GitHub Logius-standaarden/OAuth-NL-profiel
File an issue
Commit history
Pull requests

This document is also available in these non-normative format: pdf

This document is licensed under
Creative Commons Attribution 4.0 International Public License

Lo
gi

us
 S

ta
nd

ar
d

- C
on

su
lta

tio
n

ve
rs

io
n

https://www.logius.nl/onze-dienstverlening/standaarden
https://gitdocumentatie.logius.nl/publicatie/api/oauth/1.2.0/
https://gitdocumentatie.logius.nl/publicatie/api/oauth/
https://logius-standaarden.github.io/OAuth-NL-profiel/
https://gitdocumentatie.logius.nl/publicatie/api/oauth/v1.1.0/
https://www.logius.nl/
https://www.logius.nl/
https://www.kadaster.nl/
https://www.kennisnet.nl/
https://www.logius.nl/
https://www.logius.nl/
https://www.logius.nl/
https://www.logius.nl/
https://www.logius.nl/
https://www.logius.nl/
https://www.rvig.nl/
https://www.logius.nl/
https://www.geonovum.nl/
https://www.rijkswaterstaat.nl/
https://github.com/Logius-standaarden/OAuth-NL-profiel/
https://github.com/Logius-standaarden/OAuth-NL-profiel/issues/
https://github.com/Logius-standaarden/OAuth-NL-profiel/commits/
https://github.com/Logius-standaarden/OAuth-NL-profiel/pulls/
http://localhost:8080/api-oauth-1.2.0.pdf
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode

This document is an adaptation of the 'International Government Assurance Profile (iGov) for
OAuth 2.0 - Draft 03’ (hereinafter: the iGov-profile) of the OpenID Foundation. This does not
indicate an endorsement by the OpenID Foundation. In as far as the iGov-profile is incorporated
in this document, the OpenID Copyright License applies.

Abstract

The OAuth 2.0 protocol framework defines a mechanism to allow a resource owner to delegate
access to a protected resource for a client application.

This specification profiles the OAuth 2.0 protocol framework to increase baseline security, provide
greater interoperability, and structure deployments in a manner specifically applicable, but not
limited to consumer-to-government deployments in the Netherlands.

Status of This Document

This is a proposed recommendation approved by TO. Comments regarding this document may be
sent to api@logius.nl

Table of Contents

Abstract

Status of This Document

Dutch government Assurance profile for OAuth 2.0
Usecases
Introduction

Resource Server

Authorization Server

Client

Use case: Client credentials flow
Step 1. Client Authentication

Step 2. Access Token Response

Step 3. Resource interaction

Use case: Authorization code flow
Step 1. Authorization initiation

Step 2. Authorization Request

Step 3. User Authorization and consent

https://openid.net/specs/openid-igov-oauth2-1_0-03.html
https://openid.net/specs/openid-igov-oauth2-1_0-03.html
https://openid.net/intellectual-property/contribution-license-agreement/

1.
1.1
1.2
1.3

2.
2.1
2.1.1

2.1.2

2.1.3

2.2
2.2.1

2.3
2.3.1

2.3.2

2.3.3

2.3.4

2.4
2.4.1

3.
3.1
3.1.1

3.1.2

3.1.3

3.1.4

3.1.5

3.1.6

3.1.7

3.1.8

3.1.9

3.1.10

Step 4. Authorization Grant

Step 5. Access Token Request

Step 6. Access Token Response

Step 7. Resource interaction

Use case: Token exchange
Step 1: Token Exchange Request

Step 2: Access Token Response
Step 3: Resource Interaction

Conformance
Requirements Notation and Conventions
Terminology
Conformance

Client Profiles
Client Types

Full Client with User Delegation

Native Client with User Delegation

Direct Access Client

Client Registration
Redirect URI

Connection to the Authorization Server
Requests to the Authorization Endpoint

Response from the Authorization Endpoint

Requests to the Token Endpoint

Client Keys

Connection to the Protected Resource
Requests to the Protected Resource

Authorization Server Profile
Connections with clients

Grant types

Client authentication

Dynamic Registration

Client Approval

Discovery

Revocation

PKCE

Redirect URIs

RefreshTokens

Token Response

3.2
3.2.1

3.2.2

3.3
3.4
3.5
3.5.1

4.
4.1
4.2
4.3

5.
5.1
5.2
5.3

6.

A.
A.1

Connections between authorization servers and protected resources
JSON Web Tokens (JWT)

Introspection

Response to Authorization Requests
Token Lifetimes
Scopes

Claims for Authorization Outside of Delegation Scenarios

Protected Resource Profile
Protecting Resources
Connections with Clients
Connections with Authorization Servers

Advanced OAuth Security Options
Pushed Authorization Requests (PAR)
Proof of Possession Tokens (PoP)
Rich Authorization Requests

Security Considerations

References
Normative references

Organization /
Committee

Version
number

Official status Date

Forum Standaardisatie - reported
16-03-
2016

Working group 1.0 definitive approved version
15-07-
2019

Forum Standaardisatie 1.0
'comply of explain' standard
(mandatory open standard)

09-07-
2020

KP-API Working group 1.1.0-rc.1
working version / final draft by
'Working Group'

13-05-
2024

OAuth-NL Working
group

1.1.0-rc.2
proposed version - updated after public
consultation

10-07-
2024

MIDO
programmeringstafel

1.1.0 definitive approved version
03-12-
2024

Forum Standaardisatie - - tbd

https://www.forumstandaardisatie.nl/open-standaarden/nl-gov-assurance-profile-oauth-20
https://github.com/Geonovum/KP-APIs/tree/03d7fd61b3f25eef5d3242c7beee688e0d2d9623/overleggen/Werkgroep%20API%20beveiliging/Verslagen
https://gitdocumentatie.logius.nl/publicatie/api/oauth/v1.0/
https://www.forumstandaardisatie.nl/open-standaarden/nl-gov-assurance-profile-oauth-20
https://gitdocumentatie.logius.nl/publicatie/api/adr/1.0
https://gitdocumentatie.logius.nl/publicatie/api/oauth/v1.0/
https://gitdocumentatie.logius.nl/publicatie/api/oauth/v1.0/
https://github.com/Geonovum/KP-APIs/tree/03d7fd61b3f25eef5d3242c7beee688e0d2d9623/overleggen/Werkgroep%20API%20beveiliging/Verslagen
https://logius-standaarden.github.io/OAuth-NL-profiel/
https://logius-standaarden.github.io/OAuth-NL-profiel/
https://logius-standaarden.github.io/OAuth-NL-profiel/
https://github.com/Logius-standaarden/Overleg/tree/main/OAuth/2024-07-09
https://github.com/Logius-standaarden/Overleg/tree/main/OAuth/2024-07-09
https://logius-standaarden.github.io/OAuth-NL-profiel/
https://logius-standaarden.github.io/OAuth-NL-profiel/
https://logius-standaarden.github.io/OAuth-NL-profiel/
https://pgdi.nl/groups/view/c9a77467-7118-42c4-ad27-d0da773bc7dc/programmeringstafels-en-financiele-commissie-pgdi/files/8185d554-f8eb-4772-b432-b883ec0f1b01
https://pgdi.nl/groups/view/c9a77467-7118-42c4-ad27-d0da773bc7dc/programmeringstafels-en-financiele-commissie-pgdi/files/8185d554-f8eb-4772-b432-b883ec0f1b01
https://gitdocumentatie.logius.nl/publicatie/api/oauth/v1.1.0/
https://www.forumstandaardisatie.nl/open-standaarden/nl-gov-assurance-profile-oauth-20

This profile is based upon the International Government Assurance Profile (iGov) for OAuth 2.0 as
published by the OpenID Foundation. It should be considered a fork of this profile as the iGov
profile is geared more towards the American situation and in the Netherlands we have to deal with
an European Union context.

We have added the chapter Use cases to illustrate the specific use case the iGov-NL profile is
aimed at. Starting with chapter Introduction we follow the structure of the iGov profile. Where we
do not use content from iGov we use strikethrough to indicate it is not part of iGov-NL.

iGov-NL : Additional content

Content added for the iGov-NL profile is indicated like this.

The Governance of this standard is described by the API-Standaarden beheermodel in a separate
repository and published by Logius (api@logius.nl).

There are two use cases: The client credentials flow and the authorization code flow. In two
sections below we will elaborate on these, first we will introduce some common concepts.

For the Client credentials flow and Authorization code flow usecases to work properly the
following application building blocks need to be in place:

1. the Resource Server (usually described as the API)

2. the Authorization Server

3. the Client (application)

Dutch government Assurance profile for OAuth 2.0§

Usecases§

Introduction§

https://openid.net/specs/openid-igov-oauth2-1_0-03.html
https://openid.net/foundation/
https://gitdocumentatie.logius.nl/publicatie/api/beheermodel/
https://github.com/Logius-standaarden/API-Standaarden-Beheermodel/
https://github.com/Logius-standaarden/API-Standaarden-Beheermodel/
mailto:api@logius.nl

The service is provided by a public/governmental organization. Assumed is the Resource Server is
known (by the Authorization Server) prior to actual authorization of the User. A Resource Server is
assumed to possess a means for identification of the Resource Server and/or encrypted information,
optionally by using a PKI certificate. Furthermore, a Resource Server is assumed to be provided
over HTTP using TLS, other protocols are out of scope for this profile.

An Authorization Server is available, operated by either an independent trusted third-party or the
service provider itself. Only a single Authorization Server is in use. The Authorization Server is
trusted by the Resource Server. The Authorization Server can identify and authorize the User. In
case the User has no direct relationship to the Authorization Server, it can forward the User to an
IDP trusted by both the Authorization Server as well as the User. Alternatively, the Authorization
Server can otherwise identify and authorize the User and is trusted by that User.

The User uses a client, which can be any arbitrary application decided upon by the User. Assumed
is that the User trusts this client for interaction with the service. The authorization server has at
least low trust in the client when the client is either public or semi-confidential. Assumptions is that
the Client is aware of the specifications of the API and authorization is required. The Client is
either using a user-agent, typically a browser, or the relevant parts are integrated into the Client
application.

Note: Web-applications by default use the system-browser on a User's device as user-agent.
Typically a native application ("mobile app") either starts a system browser as user-agent or uses
an in-app browser. See RFC 8252 for more information on implementation of native applications.
Clients can also be 'machine clients' types.

Resource Server§

Authorization Server§

Client§

The client credentials flow can be used in usecases where there is an Client to Resource server
connection where no user information is needed by the resource server. Two examples are:

An application does a system API call. For instance a ping service to see if an API is
available. The user does not need to be logged in for this and there is no relation to the identity
of the end user.

A batch application processes a large number of transactions asynchronously at at later
scheduled time. The original access_tokens of the preceding synchronous proces is no longer
available. The flow for such a machine to machine interaction is shown in the figure below.

Resource Server

Authorization ServerClient

 1

 2

3

Figure 1 Use case Client credentials flow

Using the client credentials, the client sends a Authentication Request to the Authorization Server's
token Endpoint. It does so using the Client authentication as pre-registered. The Authorization
Server receives and validates the Authentication Request.

Use case: Client credentials flow§

Step 1. Client Authentication§

The Authorization Server authenticates the client and if valid responds to the client with an Access
Token Response. The Authorization server issues an Access Token, specific to the requested
authorization. The client receives the Access Token and can use the Access Token to send requests
to the Service API.

The Client can now send (a) request(s) to the Service, on behalf of itself. It does so by sending
requests to the Resource Server, along with the Access Token. The Resource Server uses the Access
Token for its access control decision. The Resource Server responds based on these decisions to the
Client. The contents and protocol of the Resource Request and Resource Response are out of scope
of this profile.

Direct access clients that are using the client credentials grant type and are not using
OpenIDConnect are also allowed to use an X.509 certificate to authenticate with the
authorization server's token endpoint. This flow is compatible with OAuth 2.0 due to section
2.3.2 of [rfc6749].

In this use case a (public/governmental) service is offered via an API. The service will be
consumed by the User using a client, that can be any arbitrary, non-trusted application. For
provisioning the service, the service provider requires an identifier of the User. The identifier of the
User can be either an arbitrary (self-registered) identifier or a formal identifier (citizen number or
other restricted, registered ID). Upon service provisioning, the service uses the identifier of the
User for access control within the service.

A Client wishes to send a request to an API, on behalf of the User. The API requires to have a
trusted identification and authorization of the User, before providing the Service. A Client has pre-
registered with the Authorization Endpoint and has been assigned a client_id.

Step 2. Access Token Response§

Step 3. Resource interaction§

Use case: Authorization code flow§

User

UserAgent
(native application

 or web browser)

 4

Resource Server

Authorization Server

Client

3

 2

1

 5
 6

7

Figure 2 Use case Authorization code flow

The normal flow, that is without any error handling, is described below.

As the client does not yet have a (valid) access token for this Service, it's first step is to obtain one.
Therefore it sends an Authorization Request to the Authorization Server's Authorization Endpoint.
It does so by redirecting / initiating the user-agent with the Authorization Request to the
Authorization Endpoint. The Authorization request holds further details, as specified in this profile.

Step 1. Authorization initiation§

NOTE: Extra security consideration

When the Authorization Server supports OAuth 2.0 Pushed Authorization Requests (PAR), the
client may first use PAR (or is required to use it, see
require_pushed_authorization_requests in Authorization Server Metadata). The
client can initiate the flow by pushing a POST request with the parameters to the
pushed_authorization_request_endpoint. The Authorization Server responds to the
client with a request_uri containing a reference. The client will then use this request_uri
as the redirect.

The user-agent sends the Authorization request to the Authorization Endpoint. The Authorization
Server receives and validates the request.

The Authorization Server identifies the Resource Owner (often, but not necessarily, the User) and
obtains authorization and consent from the Resource Owner for using the client to access the
Service. The method and means for identification, as well as how to obtain authorization and
consent from the Resource Owner for the request, are implementation specific and explicitly left
out of scope of this profile. Note that if the User and Resource Owner are one and the same, the
Autorization Server will have to authenticate the User in order to reliably identify the User as
Resource Owner before obtaining the authorization and consent.

Note: applicable to the Authorization Code Flow only. The Authorization Server redirects the user-
agent back to the Client, with a Authorization Response. This Authorization Response holds an
Authorization Grant and is send to the redirect_uri endpoint from the Authorization request.

Step 2. Authorization Request§

Step 3. User Authorization and consent§

Step 4. Authorization Grant§

https://www.rfc-editor.org/rfc/rfc9126
https://datatracker.ietf.org/doc/html/rfc9126#name-authorization-server-metada

The Client receives the Authorization Response from the user-agent. Using the Authorization Grant
from the response, the client sends a Token Request to the Authorization Server's token Endpoint.
It does so using the Client authentication as pre-registered. The Authorization Server receives and
validates the Token Request.

The Authorization Server responds to the client with an Access Token Response. This response
contains an Access Token, specific to the requested authorization. The client receives and validates
the Access Token and can use the Access Token to send requests to the Service API.

The Client can now send (a) request(s) to the Service, on behalf of its User. It does so by sending
requests to the Resource Server, along with the Access Token. The Resource Server uses the Access
Token for its access control decision and any customization of the service or data for the User, if
applicable. The Resource Server responds based on these decisions to the Client. The Client can
inform and interact with the User based on the information received from the Resource Server. The
contents and protocol of the Resource Request and Resource Response are out of scope of this
profile.

Token exchange is useful when the resource server requires a different token than the one(s) the
client originally received during a prior interaction. To obtain this different token, the client can use
token exchange [rfc8693]. It can be used for both impersonation and delegation, as specified in that
RFC.

The flow for such a machine to machine interaction is shown in the figure below.

Step 5. Access Token Request§

Step 6. Access Token Response§

Step 7. Resource interaction§

Use case: Token exchange§

Resource Server

Authorization ServerClient

 1

 2

3

Figure 3 Use case token exchange

Note that the method by which the client received the original token(s)—either directly from an
OAuth or SAML token server, or indirectly via other client applications—is not part of the token
exchange process itself and, therefore, is not depicted in the diagram.

Using client credentials, the client sends a token exchange request to the Authorization Server's
token endpoint. At a minimum, this request includes the subject token and the token exchange
grant type. Optionally, the request may also include an actor token, audience, resource, and scopes.

The Authorization Server authenticates the client and validates the tokens and requested access,
according to established policies. If valid, it issues a new token (typically an access token). This
new token contains an "act" or "may_act" claim, linking the new token to the original subject
token(s) as outlined in RFC 8693, as well as other claims relevant to the token type (e.g., an access
token). The response may also include a refresh token, expiration details, and scopes. The client
receives the new (access) token and can use it to make requests to the service API.

Step 1: Token Exchange Request§

Step 2: Access Token Response§

The client can now use the new token to send requests to the service. These requests are directed to
the Resource Server, which evaluates the access token as part of its access control decisions (e.g.,
by using the subject in the access token). The Resource Server responds based on these access
control decisions. The specifics of the Resource Request and Resource Response are beyond the
scope of this document.

As well as sections marked as non-normative, all authoring guidelines, diagrams, examples, and
notes in this specification are non-normative. Everything else in this specification is normative.

The key words MAY, MUST, MUST NOT, NOT RECOMMENDED, OPTIONAL,
RECOMMENDED, REQUIRED, SHALL, SHALL NOT, SHOULD, and SHOULD NOT in this
document are to be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only
when, they appear in all capitals, as shown here.

This document profiles the OAuth 2.0 web authorization framework for use in the context of
securing web-facing application programming interfaces (APIs), particularly Representational
State Transfer (RESTful) APIs. The OAuth 2.0 specifications accommodate a wide range of
implementations with varying security and usability considerations, across different types of
software clients. The OAuth 2.0 client, protected resource, and authorization server profiles defined
in this document serve two purposes:

1. Define a mandatory baseline set of security controls suitable for a wide range of government
use cases, while maintaining reasonable ease of implementation and functionality

2. Identify optional, advanced security controls for sensitive use cases where increased risk
justifies more stringent controls.

This OAuth profile is intended to be shared broadly, and has been greatly influenced by the
[HEART OAuth2 Profile][HEART.OAuth2]. derived from the [iGov OAuth2 profile]
[iGOV.OAuth2].

Step 3: Resource Interaction§

1. Conformance§

Introduction§

https://www.rfc-editor.org/info/bcp14

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD",
"SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in
this document are to be interpreted as described in [rfc2119] .

All uses of [JSON Web Signature (JWS)] [rfc7515] and [JSON Web Encryption (JWE)] [rfc7516]
data structures in this specification utilize the JWS Compact Serialization or the JWE Compact
Serialization; the JWS JSON Serialization and the JWE JSON Serialization are not used.

This specification uses the terms "Access Token", "Authorization Code", "Authorization
Endpoint", "Authorization Grant", "Authorization Server", "Client", "Client Authentication",
"Client Identifier", "Client Secret", "Grant Type", "Protected Resource", "Redirection URI",
"Refresh Token", "Resource Owner", "Resource Server", "Response Type", and "Token Endpoint"
defined by [OAuth 2.0] [rfc6749] , the terms "Claim Name", "Claim Value", and "JSON Web
Token (JWT)" defined by [JSON Web Token (JWT)] [rfc7519] , and the terms defined by [OpenID
Connect Core 1.0] [OpenID.Core] .

This specification defines requirements for the following components:

OAuth 2.0 clients.

OAuth 2.0 authorization servers.

OAuth 2.0 protected resources.

The specification also defines features for interaction between these components:

Client to authorization server.

Protected resource to authorization server.

1.1 Requirements Notation and Conventions§

1.2 Terminology§

1.3 Conformance§

iGov-NL : Additional content
This profile is based upon the international government assurance profile for OAuth 2.0 (iGov)
[iGOV.OAuth2] as published by the OpenID Foundation (https://openid.net/foundation/). It
should be considered a fork of this profile as the iGov profile is geared more towards the
American situtation and in the Netherlands we have to deal with an European Union context.

When an iGov iGov-NL-compliant component is interacting with other iGov iGov-NL-compliant
components, in any valid combination, all components MUST fully conform to the features and
requirements of this specification. All interaction with non-iGov iGov-NL components is outside
the scope of this specification.

An iGov iGov-NL-compliant OAuth 2.0 authorization server MUST support all features as
described in this specification. A general-purpose authorization server MAY support additional
features for use with non-iGov iGov-NL clients and protected resources.

An iGov iGov-NL-compliant OAuth 2.0 client MUST use all functions as described in this
specification. A general-purpose client library MAY support additional features for use with non-
iGov authorization servers and protected resources.

An iGov iGov-NL-compliant OAuth 2.0 protected resource MUST use all functions as described in
this specification. A general-purpose protected resource library MAY support additional features for
use with non-iGov iGov-NL authorization servers and clients.

The following profile descriptions give patterns of deployment for use in different types of client
applications based on the OAuth grant type. Additional grant types, such as assertions, chained
tokens, or other mechanisms, are out of scope of this profile and must be covered separately by
appropriate profile documents.

This client type applies to clients that act on behalf of a particular resource owner and require
delegation of that user’s authority to access the protected resource. Furthermore, these clients are

2. Client Profiles§

2.1 Client Types§

2.1.1 Full Client with User Delegation§

capable of interacting with a separate web browser application to facilitate the resource owner's
interaction with the authentication endpoint of the authorization server.

These clients MUST use the authorization code flow of OAuth 2 by sending the resource owner to
the authorization endpoint to obtain authorization. The user MUST authenticate to the authorization
endpoint. The user’s web browser is then redirected back to a URI hosted by the client service,
from which the client can obtain an authorization code passed as a query parameter. The client then
presents that authorization code along with its own credentials (private_key_jwt) to the
authorization server's token endpoint to obtain an access token.

iGov-NL : Additional content
In addition to private_key_jwt, the client authentication method tls_client_auth
[rfc8705] MAY also be used.

These clients MUST be associated with a unique public key, as described in Section 2.3.4.

This client type MAY request and be issued a refresh token if the security parameters of the access
request allow for it.

This client type applies to clients that act on behalf of a particular resource owner, such as an app
on a mobile platform, and require delegation of that user's authority to access the protected
resource. Furthermore, these clients are capable of interacting with a separate web browser
application to facilitate the resource owner's interaction with the authentication endpoint of the
authorization server. In particular, this client type runs natively on the resource owner's device,
often leading to many identical instances of a piece of software operating in different environments
and running simultaneously for different end users.

These clients MUST use the authorization code flow of OAuth 2 by sending the resource owner to
the authorization endpoint to obtain authorization. The user MUST authenticate to the authorization
endpoint. The user is then redirected back to a URI hosted by the client, from which the client can
obtain an authorization code passed as a query parameter. The client then presents that
authorization code along to the authorization server's token endpoint to obtain an access token.

Native clients MUST either:

use dynamic client registration to obtain a separate client id for each instance, or

act as a public client by using a common client id and use PKCE [rfc7636] to protect calls to
the token endpoint.

2.1.2 Native Client with User Delegation§

Native applications using dynamic registration SHOULD generate a unique public and private key
pair on the device and register that public key value with the authorization server. Alternatively, an
authorization server MAY issue a public and private key pair to the client as part of the registration
process. In such cases, the authorization server MUST discard its copy of the private key. Client
credentials MUST NOT be shared among instances of client software.

Dynamically registered native applications MAY use PKCE.

Native applications not registering a separate public key for each instance are considered Public
Clients, and MUST use PKCE [rfc7636] with the S256 code challenge mechanism. Public Clients
do not authenticate with the Token Endpoint in any other way.

This client type MUST NOT request or be issued a refresh token.

This profile applies to clients that connect directly to protected resources and do not act on behalf
of a particular resource owner, such as those clients that facilitate bulk transfers.

These clients use the client credentials flow of OAuth 2 by sending a request to the token endpoint
with the client's credentials and obtaining an access token in the response. Since this profile does
not involve an authenticated user, this flow is appropriate only for trusted applications, such as
those that would traditionally use a developer key. For example, a partner system that performs
bulk data transfers between two systems would be considered a direct access client.

All clients MUST register with the authorization server. For client software that may be installed on
multiple client instances, such as native applications or web application software, each client
instance MAY receive a unique client identifier from the authorization server. Clients that share
client identifiers are considered public clients.

Client registration MAY be completed by either static configuration (out-of-band, through an
administrator, etc...) or dynamically.

2.1.3 Direct Access Client§

2.2 Client Registration§

Clients using the authorization code grant type MUST register their full redirect URIs. The
Authorization Server MUST validate the redirect URI given by the client at the authorization
endpoint using strict string comparison.

A client MUST protect the values passed back to its redirect URI by ensuring that the redirect URI
is one of the following:

Hosted on a website with Transport Layer Security (TLS) protection (a Hypertext Transfer
Protocol – Secure (HTTPS) URI)

Hosted on a client-specific non-remote-protocol URI scheme (e.g., myapp://)

Hosted on the local domain of the client (e.g., http://localhost/).

Clients MUST NOT allow the redirecting to the local domain.

Clients SHOULD NOT have multiple redirect URIs on different domains.

Clients MUST NOT forward values passed back to their redirect URIs to other arbitrary or user-
provided URIs (a practice known as an "open redirector").

Full clients and browser-embedded clients making a request to the authorization endpoint MUST
use an unpredictable value for the state parameter with at least 128 bits of entropy. Clients MUST
validate the value of the state parameter upon return to the redirect URI and MUST ensure that
the state value is securely tied to the user’s current session (e.g., by relating the state value to a
session identifier issued by the client software to the browser).

Clients MUST include their full redirect URI in the authorization request. To prevent open
redirection and other injection attacks, the authorization server MUST match the entire redirect URI
using a direct string comparison against registered values and MUST reject requests with an invalid
or missing redirect URI.

2.2.1 Redirect URI§

2.3 Connection to the Authorization Server§

2.3.1 Requests to the Authorization Endpoint§

iGov-NL : Additional content

When the Authorization Server supports OAuth 2.0 Pushed Authorization Requests (PAR), the
client may first use PAR (or is required to use it, see
require_pushed_authorization_requests in Authorization Server Metadata). The
client can initiate the flow by pushing a POST request with the parameters to the
pushed_authorization_request_endpoint. The Authorization Server responds to the
client with a request_uri containing a reference. The client will then use this request_uri
as the redirect.

Public clients MUST apply PKCE, as per RFC7636. As code_challenge the S256 method
MUST be applied. Effectively this means that browser based and native clients MUST include a
cryptographic random code_verifier of at least 128 bits of entropy and the
code_challenge_method with the value S256.

Request fields:

client_id
Mandatory. MUST have the value as obtained during registration.

scope
Optional.

response_type
Mandatory. MUST have value code for the Authorization Code Flow.

redirect_uri
Mandatory. MUST be an absolute HTTPS URL, pre-registered with the Authorization
Server.

state
Mandatory, see above. Do not use the SessionID secure cookie for this.

code_challenge
In case of using a native app as user-agent mandatory. (Eg. an UUID [rfc4122])

code_challenge_method
In case code_challenge is used with a native app, mandatory. MUST use the value
S256.

https://www.rfc-editor.org/rfc/rfc9126
https://datatracker.ietf.org/doc/html/rfc9126#name-authorization-server-metada

iGov-NL : Additional content

Response parameters

code
Mandatory. MUST be a cryptographic random value, using an unpredictable value with at
least 128 bits of entropy.

state
Mandatory. MUST be a verbatim copy of the value of the state parameter in the
Authorization Request.

EXAMPLE 1
The following is a sample response from a web-based client to the end user’s browser for the
purpose of redirecting the end user to the authorization server's authorization endpoint:

HTTP/1.2 302 Found

Cache-Control: no-cache

Connection: close

Content-Type: text/plain; charset=UTF-8

Date: Wed, 07 Jan 2015 20:24:15 GMT

Location: https://idp-p.example.com/authorize?client_id=55f9f559-

2496-49d4-b6c3-

351a586b7484&nonce=cd567ed4d958042f721a7cdca557c30d&response_type=c

ode&scope=openid+email&redirect_uri=https%3A%2F%2Fclient.example.or

g%2Fcb

Status: 302 Found

This causes the browser to send the following (non-normative) request to the authorization
endpoint:

GET /authorize? client_id=55f9f559-2496-49d4-b6c3-

351a586b7484&nonce=cd567ed4d958042f721a7cdca557c30d&response_type=c

ode&scope=openid+email&redirect_uri=https%3A%2F%2Fclient.example.or

g%2Fcb HTTP/1.1

Host: idp-p.example.com

2.3.2 Response from the Authorization Endpoint§

Full clients, native clients with dynamically registered keys, and direct access clients as defined
above MUST authenticate to the authorization server's token endpoint using a JWT assertion as
defined by the [JWT Profile for OAuth 2.0 Client Authentication and Authorization Grants]
[rfc7523] using only the private_key_jwt method defined in [OpenID Connect Core]
[OpenID.Core]. The assertion MUST use the claims as follows:

iGov-NL : Additional content

When using the JWT assertion, the assertion MUST use the claims as follows:

iss
the client ID of the client creating the token

sub
the client ID of the client creating the token

aud
the URL of the authorization server's token endpoint

iat
the time that the token was created by the client

exp
the expiration time, after which the token MUST be considered invalid

jti
a unique identifier generated by the client for this authentication. This identifier MUST
contain at least 128 bits of entropy and MUST NOT be re-used by any subsequent
authentication token.

iGov-NL : Additional content
In addition to private_key_jwt, the client authentication method tls_client_auth
[rfc8705] MAY also be used. Examples of this method can be found in the related
documentation of the specific standards.

Private Key JWT is a method of client authentication where the client creates and signs a
JWT using its own private key. This method is described in a combination of RFC 7521
(Assertion Framework) and RFC 7523 (JWT Profile for Client Authentication), and
referenced by OpenID Connect and FAPI 2.0 Security Profile.

The JWT assertion MUST be signed by the client using the client's private key. See Section 2.3.4
for mechanisms by which the client can make its public key known to the server. The authorization

2.3.3 Requests to the Token Endpoint§

server MUST support the RS256 signature method (the Rivest, Shamir, and Adleman (RSA)
signature algorithm with a 256-bit hash) and MAY use other asymmetric signature methods listed in
the JSON Web Algorithms ([JWA] [rfc7518]) specification.

iGov-NL : Additional content

In addition to above signing methods, the Authorization server SHOULD support PS256
signing algorithm [rfc7518] for the signing of the private_key_jwt.

EXAMPLE 2
The following sample JWT contains the above claims and has been signed using the RS256
JWS algorithm and the client's own private key (with line breaks for display purposes only):

eyJ0eXAiOiJKV1QiLCJhbGciOiJSUzI1NiJ9.ew0KICAgImlzcyI6ICI1NWY5ZjU1OS0yN

DQtYjZjMy0zNTFhNTg2Yjc0ODQiLA0KICAgInN1YiI6ICI1NWY5ZjU1OS0yNDk2LTQ5ZDQ

zNTFhNTg2Yjc0ODQiLA0KICAgImF1ZCI6ICJodHRwczovL2lkcC1wLmV4YW1wbGUuY29tL

iwNCiAgICJpYXQiOiAxNDE4Njk4Nzg4LA0KICAgImV4cCI6IDE0MTg2OTg4NDgsDQogICA

gIjE0MTg2OTg3ODgvMTA3YzRkYTUxOTRkZjQ2M2U1MmI1Njg2NWM1YWYzNGU1NTk1Ig0Kf

JQGq3G2OEc2kUCQ8zVj7pqff87Sua5nktLIHj28l5onO5VpsL4sRHIGOvrpo7XO6jgtPWy

Lyo1TWHbtErQEGpmf7nKiNxVCXlGYJXSDJB6shP3OfvdUc24urPJNUGBEDptIgT7-Lhf6B

bNeOPRFDqQoLWqe7UxuI06dKX3SEQRMqcxYSIAfP7CQZ4WLuKXb6oEbaqz6gL4l6p83G7w

THszt-ZjKR38v4F_MnSrx8e0iIqgZwurW0RtetEWvynOCJXk-p166T7qZR45xuCxgOotXY

7GtgspMgOEKj3b_WpCiuNEwQ

This is sent in the request to the token endpoint as in the following example:

POST /token HTTP/1.1

Content-Type: application/x-www-form-urlencoded

User-Agent: Rack::OAuth2 (1.0.8.7) (2.5.3.2, ruby 2.1.3 (2014-09-19))

Accept: */*

Date: Tue, 16 Dec 2014 02:59:48 GMT

Content-Length: 884

Host: idp-p.example.com

grant_type=authorization_code

&code=sedaFh

&scope=openid+email

&client_id=55f9f559-2496-49d4-b6c3-351a586b7484

&redirect_uri=https%3A%2F%2Fclient.example.org%2Fcb

&client_assertion_type=urn%3Aietf%3Aparams%3Aoauth%3Aclient-assertion-

&client_assertion=eyJ0eXAiOiJKV1QiLCJhbGciOiJSUzI1NiJ9.ew0KICAgImlzcyI

5ZjU1OS0yNDk2LTQ5ZDQtYjZjMy0zNTFhNTg2Yjc0ODQiLA0KICAgInN1YiI6ICI1NWY5Z

Dk2LTQ5ZDQtYjZjMy0zNTFhNTg2Yjc0ODQiLA0KICAgImF1ZCI6ICJodHRwczovL2lkcC1w

wbGUuY29tL3Rva2VuIiwNCiAgICJpYXQiOiAxNDE4Njk4Nzg4LA0KICAgImV4cCI6IDE0MT

DgsDQogICAianRpIjogIjE0MTg2OTg3ODgvMTA3YzRkYTUxOTRkZjQ2M2U1MmI1Njg2NWM

1NTk1Ig0KfQ.t-_gX8JQGq3G2OEc2kUCQ8zVj7pqff87Sua5nktLIHj28l5onO5VpsL4sR

7XO6jgtPWy3iLXv3-NLyo1TWHbtErQEGpmf7nKiNxVCXlGYJXSDJB6shP3OfvdUc24urPJ

IgT7-Lhf6BbwQNlMQubNeOPRFDqQoLWqe7UxuI06dKX3SEQRMqcxYSIAfP7CQZ4WLuKXb6

L4l6p83G7wKGDeLETOTHszt-ZjKR38v4F_MnSrx8e0iIqgZwurW0RtetEWvynOCJXk-p16

xuCxgOotXY6O3et4n77GtgspMgOEKj3b_WpCiuNEwQ

Clients using the authorization code grant type or direct access clients using the client credentials
grant type MUST have a public and private key pair for use in authentication to the token endpoint.
These clients MUST register their public keys in their client registration metadata by either sending
the public key directly in the jwks field or by registering a jwks_uri that MUST be reachable by
the authorization server. It is RECOMMENDED that clients use a jwks_uri if possible as this
allows for key rotation more easily. This applies to both dynamic and static (out-of-band) client
registration.

The jwks field or the content available from the jwks_uri of a client MUST contain a public key
in [JSON Web Key Set (JWK Set)] [rfc7517] format. The authorization server MUST validate the
content of the client's registered jwks_uri document and verify that it contains a JWK Set. The
following example is of a 2048-bit RSA key:

2.3.4 Client Keys§

EXAMPLE 3

{

 "keys": [

 {

 "alg": "RS256",

 "e": "AQAB",

 "n": "kAMYD62n_f2rUcR4awJX4uccDt0zcXRssq_mDch5-

ifcShx9aTtTVza23PTn3KaKrsBXwWcfioXR6zQn5eYdZQVGNBfOR4rxF5i7t3hfb4Wk

S50EK1gBYk2lO9NSrQ-xG9QsUsAnN6RHksXqsdOqv-nxjLexDfIJlgbcCN9h6TB-

C66ZXv7PVhl19gIYVifSU7liHkLe0l0fw7jUI6rHLHf4d96_neR1HrNIK_xssr99Xpv

1EM_ubxpktX0T925-qej9fMEpzzQ5HLmcNt1H2_VQ_Ww1JOLn9vRn-

H48FDj7TxlIT74XdTZgTv31w_GRPAOfyxEw_ZUmxhz5Z-gTlQ",

 "kty": "RSA",

 "kid": "oauth-client"

 }

]

}

iGov-NL : Additional content

In case the Authorization Server, Resource Server and client are not operated under
responsibility of the same organisation, each party MUST use PKIoverheid certificates with
OIN. The PKIoverheid certificate MUST be included either as a x5c or as x5u parameter, as
per [rfc7517] §4.6 and 4.7. Parties SHOULD at least support the inclusion of the certificate as
x5c parameter, for maximum interoperability. Parties MAY agree to use x5u, for instance for
communication within specific environments.

EXAMPLE 4
For reference, the corresponding public/private key pair for this public key is the following (in
JWK format):

{

 "alg": "RS256",

 "d": "PjIX4i2NsBQuOVIw74ZDjqthYsoFvaoah9GP-

cPrai5s5VUIlLoadEAdGbBrss_6dR58x_pRlPHWh04vLQsFBuwQNc9SN3O6TAaai9Jg

5TlCi6V0d4O6lUoTYpMR0cxFIU-xFMwII--_OZRgmAxiYiAXQj7TKMKvgSvVO7-9-

YdhMwHoD-

UrJkfnZckMKSs0BoAbjReTski3IV9f1wVJ53_pmr9NBpiZeHYmmG_1QDSbBuY35Zumm

ut4QShF-fey2gSALdp9h9hRk1p1fsTZtH2lwpvmOcjwDkSDv-zO-

4Pt8NuOyqNVPFahROBPlsMVxc_zjPck8ltblalBHPo6AQ",

 "e": "AQAB",

 "n": "kAMYD62n_f2rUcR4awJX4uccDt0zcXRssq_mDch5-

ifcShx9aTtTVza23PTn3KaKrsBXwWcfioXR6zQn5eYdZQVGNBfOR4rxF5i7t3hfb4Wk

S50EK1gBYk2lO9NSrQ-xG9QsUsAnN6RHksXqsdOqv-nxjLexDfIJlgbcCN9h6TB-

C66ZXv7PVhl19gIYVifSU7liHkLe0l0fw7jUI6rHLHf4d96_neR1HrNIK_xssr99Xpv

1EM_ubxpktX0T925-qej9fMEpzzQ5HLmcNt1H2_VQ_Ww1JOLn9vRn-

H48FDj7TxlIT74XdTZgTv31w_GRPAOfyxEw_ZUmxhz5Z-gTlQ",

 "kty": "RSA",

 "kid": "oauth-client"

}

Note that the second example contains both the public and private keys, while the first example
contains the public key only.

2.4 Connection to the Protected Resource§

Clients SHOULD send bearer tokens passed in the Authentication header as defined by [rfc6750] .
Clients MAY use the form-parameter or query-parameter methods in [rfc6750] . Authorized
requests MUST be made over TLS, and clients MUST validate the protected resource server's
certificate.

All servers MUST conform to applicable recommendations found in the Security Considerations
sections of [rfc6749] and those found in the "OAuth Threat Model Document" [rfc6819] .

The authorization server MUST protect all communications to and from its OAuth endpoints using
TLS.

2.4.1 Requests to the Protected Resource§

EXAMPLE 5
An example of an OAuth-protected call to the OpenID Connect UserInfo endpoint, sending the
token in the Authorization header, follows:

GET /userinfo HTTP/1.1

Authorization: Bearer

eyJhbGciOiJSUzI1NiJ9.eyJleHAiOjE0MTg3MDI0MTIsImF1ZCI6WyJjMWJjODRlNC

00N2VlLTRiNjQtYmI1Mi01Y2RhNmM4MWY3ODgiXSwiaXNzIjoiaHR0cHM6XC9cL2lkc

C1wLmV4YW1wbGUuY29tXC8iLCJqdGkiOiJkM2Y3YjQ4Zi1iYzgxLTQwZWMtYTE0MC05

NzRhZjc0YzRkZTMiLCJpYXQiOjE0MTg2OTg4MTJ9.iHMz_tzZ90_b0QZS-

AXtQtvclZ7M4uDAs1WxCFxpgBfBanolW37X8h1ECrUJexbXMD6rrj_uuWEqPD738oWR

o0rOnoKJAgbF1GhXPAYnN5pZRygWSD1a6RcmN85SxUig0H0e7drmdmRkPQgbl2wMhu-

6h2Oqw-ize4dKmykN9UX_2drXrooSxpRZqFVYX8PkCvCCBuFy2O-

HPRov_SwtJMk5qjUWMyn2I4Nu2s-R20aCA-

7T5dunr0iWCkLQnVnaXMfA22RlRiU87nl21zappYb1_EHF9ePyq3Q353cDUY7vje8m2

kKXYTgc_bUAYuW-W3SMSw5UlKaHtSZ6PQICoA

Accept: text/plain, application/json, application/*+json, */*

Host: idp-p.example.com

Connection: Keep-Alive

User-Agent: Apache-HttpClient/4.2.3 (java 1.5)

3. Authorization Server Profile§

The authorization server MUST support the authorization_code , and MAY support the
client_credentials grant types as described in Section 2. The authorization server MUST limit
each registered client (identified by a client ID) to a single grant type only, since a single piece of
software will be functioning at runtime in only one of the modes described in Section 2. Clients
that have multiple modes of operation MUST have a separate client ID for each mode.

iGov-NL : Additional content

Token exchange grant type [rfc8693] SHOULD be supported by the authorization server. This
is used to translate a third party token (OAuth or SAML). For example, exchanging a DigiD or
eHerkenning SAML token for an OAuth token.

When token exchange is not supported, SAML bearer grant [rfc7522] MAY be used as
alternative.

The authorization server MUST enforce client authentication as described above for the
authorization code and client credentials grant types. Public client cannot authenticate to the
authorization server.

The authorization server MUST validate all redirect URIs for authorization code and implicit grant
types.

Dynamic Registration allows for authorized Clients to on-board programmatically without
administrative intervention. This is particularly important in ecosystems with many potential
Clients, including Mobile Apps acting as independent Clients. Authorization servers MUST support
dynamic client registration, and clients MAY register using the [Dynamic Client Registration

3.1 Connections with clients§

3.1.1 Grant types§

3.1.2 Client authentication§

3.1.3 Dynamic Registration§

Protocol] [rfc7591] for authorization code grant types. Clients MUST NOT dynamically register for
the client credentials grant type. Authorization servers MAY limit the scopes available to
dynamically registered clients.

Authorization servers MAY protect their Dynamic Registration endpoints by requiring clients to
present credentials that the authorization server would recognize as authorized participants.
Authorization servers MAY accept signed software statements as described in [rfc7591] [rfc7591]
issued to client software developers from a trusted registration entity. The software statement can
be used to tie together many instances of the same client software that will be run, dynamically
registered, and authorized separately at runtime. The software statement MUST include the
following client metadata parameters:

redirect_uris
array of redirect URIs used by the client; subject to the requirements listed in [Section 2.2.1]
(#redirect-uri)

grant_types
grant type used by the client; must be "authorization_code” or "client_credentials”

jwks_uri or jwks
client's public key in JWK Set format; if jwks_uri is used it MUST be reachable by the
Authorization Server and point to the client's public key set

client_name
human-readable name of the client

client_uri
URL of a web page containing further information about the client

iGov-NL : Additional content
In this version of iGov-NL we recommend that the Authorization servers SHOULD support
dynamic client registration. However depending on how the future authentication architecture
of the Dutch government develops in regards to OAuth we may revisit this in a future revision.
The current requirement fits an architecture where there is a limited number of widely used
authorization servers. However if in practice we start seeing a very large number of
authorization servers with limited use this requirement can become a recommendation in a
future version of this profile. For these authorization servers with limited use we consider
mandatory support for dynamic client registration a large burden.

When prompting the end user with an interactive approval page, the authorization server MUST
indicate to the user:

3.1.4 Client Approval§

Whether the client was dynamically registered, or else statically registered by a trusted
administrator, or a public client.

Whether the client is associated with a software statement, and in which case provide
information about the trusted issuer of the software statement.

What kind of access the client is requesting, including scope, protected resources (if
applicable beyond scopes), and access duration.

For example, for native clients a message indicating a new App installation has been registered as a
client can help users determine if this is the expected behaviour. This signal helps users protect
themselves from potentially rogue clients.

The authorization server MUST provide an [OpenID Connect service discovery]
[OpenID.Discovery] endpoint listing the components relevant to the OAuth protocol:

issuer
REQUIRED. The fully qualified issuer URL of the server

authorization_endpoint
REQUIRED. The fully qualified URL of the server's authorization endpoint defined by
[OAuth 2.0] [rfc6749]

token_endpoint
REQUIRED. The fully qualified URL of the server's token endpoint defined by [OAuth 2.0]
[rfc6749]

introspection_endpoint
OPTIONAL. The fully qualified URL of the server's introspection endpoint defined by [OAuth
Token Introspection] [rfc7662]

revocation_endpoint
OPTIONAL. The fully qualified URL of the server's revocation endpoint defined by [OAuth
2.0 Token Revocation] [rfc7009]

jwks_uri
REQUIRED. The fully qualified URI of the server's public key in [JWK Set] [rfc7517] format

If the authorization server is also an OpenID Connect Provider, it MUST provide a discovery
endpoint meeting the requirements listed in Section 3.6 of the iGov OpenID Connect profile.

3.1.5 Discovery§

EXAMPLE 6
The following example shows the JSON document found at a discovery endpoint for an
authorization server:

iGov-NL : Additional content
Added tls_client_auth

{

 "request_parameter_supported": true,

 "registration_endpoint": "https://idp-p.example.com/register",

 "userinfo_signing_alg_values_supported": [

 "HS256", "HS384", "HS512", "RS256", "RS384", "RS512"

],

 "token_endpoint": "https://idp-p.example.com/token",

 "request_uri_parameter_supported": false,

 "request_object_encryption_enc_values_supported": [

 "A192CBC-HS384", "A192GCM", "A256CBC+HS512",

 "A128CBC+HS256", "A256CBC-HS512",

 "A128CBC-HS256", "A128GCM", "A256GCM"

],

 "token_endpoint_auth_methods_supported": [

 "private_key_jwt", "tls_client_auth"

],

 "jwks_uri": "https://idp-p.example.com/jwk",

 "authorization_endpoint": "https://idp-p.example.com/authorize",

 "require_request_uri_registration": false,

 "introspection_endpoint": "https://idp-p.example.com/introspect",

 "request_object_encryption_alg_values_supported": [

 "RSA-OAEP", "RSA1_5", "RSA-OAEP-256"

],

 "service_documentation": "https://idp-p.example.com/about",

 "response_types_supported": [

 "code", "token"

],

 "token_endpoint_auth_signing_alg_values_supported": [

 "HS256", "HS384", "HS512", "RS256", "RS384", "RS512"

],

 "revocation_endpoint": "https://idp-p.example.com/revoke",

 "request_object_signing_alg_values_supported": [

 "HS256", "HS384", "HS512", "RS256", "RS384", "RS512"

],

 "grant_types_supported": [

 "authorization_code",

 "urn:ietf:params:oauth:grant-type:jwt-bearer",

 "client_credentials",

Clients and protected resources SHOULD cache this discovery information. It is
RECOMMENDED that servers provide cache information through HTTP headers and make the
cache valid for at least one week.

The server MUST provide its public key in JWK Set format. The key MUST contain the following
fields:

kid
The key ID of the key pair used to sign this token

kty
The key type

alg
The default algorithm used for this key

 "urn:ietf:params:oauth:grant-type:token-exchange"

],

 "scopes_supported": [

 "profile", "openid", "email", "address", "phone", "offline_access"

],

 "op_tos_uri": "https://idp-p.example.com/about",

 "issuer": "https://idp-p.example.com/",

 "op_policy_uri": "https://idp-p.example.com/about"

}

Clients and protected resources SHOULD cache this key. It is RECOMMENDED that servers
provide cache information through HTTP headers and make the cache valid for at least one week.

iGov-NL : Additional content

iGov requires that the authorization server provides an OpenIDConnect service discovery
endpoint. Recently OAuth 2.0 Authorization Server Metadata [rfc8414] has been finalized, this
provide the same functionality in a more generic way and could replace this requirement in a
future version of the iGov-NL profile.

Token revocation allows a client to signal to an authorization server that a given token will no
longer be used.

An authorization server MUST revoke the token if the client requesting the revocation is the client
to which the token was issued, the client has permission to revoke tokens, and the token is
revocable.

A client MUST immediately discard the token and not use it again after revoking it.

EXAMPLE 7
The following is an example of a 2048-bit RSA public key:

{

 "keys": [

 {

 "alg": "RS256",

 "e": "AQAB",

 "n": "o80vbR0ZfMhjZWfqwPUGNkcIeUcweFyzB2S2T-

hje83IOVct8gVg9FxvHPK1ReEW3-p7-A8GNcLAuFP_8jPhiL6LyJC3F10aV9KPQFF-

w6Eq6VtpEgYSfzvFegNiPtpMWd7C43EDwjQ-GrXMVCLrBYxZC-

P1ShyxVBOzeR_5MTC0JGiDTecr_2YT6o_3aE2SIJu4iNPgGh9MnyxdBo0Uf0TmrqEIa

bquXA1-V8iUihwfI8qjf3EujkYi7gXXelIo4_gipQYNjr4DBNlE0__RI0kDU-

27mb6esswnP2WgHZQPsk779fTcNDBIcYgyLujlcUATEqfCaPDNp00J6AbY6w",

 "kty": "RSA",

 "kid": "rsa1"

 }

]

}

3.1.6 Revocation§

An authorization server MUST support the Proof Key for Code Exchange (PKCE [rfc7636])
extension to the authorization code flow, including support for the S256 code challenge method.
The authorization server MUST NOT allow an iGov iGov-NL client to use the plain code challenge
method.

The authorization server MUST compare a client's registered redirect URIs with the redirect URI
presented during an authorization request using an exact string match.

Authorization Servers MAY issue refresh tokens to clients under the following context:

Clients MUST be registered with the Authorization Server.

Clients MUST present a valid client_id. Confidential clients MUST present a signed
client_assertion with their associated keypair.

Clients using the Direct Credentials method MUST NOT be issued refresh_tokens. These clients
MUST present their client credentials with a new access_token request and the desired scope.

iGov-NL : Additional content
Refresh tokens for public clients must either be sender-constrained or one-time use. From The
OAuth 2.1 Authorization Framework: Refresh Token Grant

3.1.7 PKCE§

3.1.8 Redirect URIs§

3.1.9 RefreshTokens§

https://datatracker.ietf.org/doc/html/draft-ietf-oauth-v2-1-10#name-refresh-token-grant
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-v2-1-10#name-refresh-token-grant

iGov-NL : Additional content

The Token Response has the following contents:

access_token
Mandatory. Structured access token a.k.a. a JWT Bearer token. The JWT MUST be signed.

token_type
Mandatory. The type for a JWT Bearer token is Bearer, as per [rfc6750]

refresh_token
Under this profile, refresh tokens are supported.

expires_in
Optional. Lifetime of the access token, in seconds.

scope
Optional. Scope(s) of the access (token) granted, multiple scopes are separated by
whitespace. The scope MAY be omitted if it is identical to the scope requested.

For best practices on token lifetime see section Token Lifetimes.

Unlike the core OAuth protocol, the iGov iGov-NL profile defines interoperability requirements
between authorization servers and resource servers.

[/]: Dit is §3.3 geworden in de nieuwe versie van iGov. De tekst is ook (qua zinsbouw) aangepast.

In order to facilitate interoperability with multiple protected resources, all iGov iGov-NL-
compliant authorization servers MUST issue cryptographically signed tokens in the JSON Web
Token (JWT) format as defined in JSON Web Token (JWT) Profile for OAuth 2.0 Access Tokens .
The information carried in the JWT is intended to allow a protected resource to quickly test the
integrity of the token without additional network calls, and to allow the protected resource to
determine which authorization server issued the token. The protected resource MAY use the

3.1.10 Token Response§

3.2 Connections between authorization servers and protected resources§

3.2.1 JSON Web Tokens (JWT)§

https://www.rfc-editor.org/rfc/rfc9068

authorization server token introspection service, which is in turn used for conveying service to
retrieve additional security information about the token.

The server MUST issue tokens as JWTs with, at minimum, the following claims:

iss
The issuer URL of the server that issued the token

client_id
The client id of the client to whom this token was issued

exp
The expiration time (integer number of seconds since from 1970-01-01T00:00:00Z UTC),
after which the token MUST be considered invalid

jti
A unique JWT Token ID value with at least 128 bits of entropy. This value MUST NOT be re-
used in another token. Clients MUST check for reuse of jti values and reject all tokens issued
with duplicate jti values.

sub
The identifier of the end-user that authorized this client, or the client id of a client acting on its
own behalf (such as a bulk transfer). Since this information could potentially leak private user
information, it should be used only when needed. End-user identifiers SHOULD be pairwise
anonymous identifiers unless the audiance requires otherwise.

aud
The audience of the token, an array containing the identifier(s) of protected resource(s) for
which the token is valid, if this information is known. The aud claim may contain multiple
values if the token is valid for multiple protected resources. Note that at runtime, the
authorization server may not know the identifiers of all possible protected resources at which
a token may be used.

iat
The "iat" (issued at) claim identifies the time at which the JWT was issued. This claim can be
used to determine the age of the JWT. Its value MUST be a number containing a NumericDate
value.

The access tokens MUST be signed with [JWS] [RFC7515] . If private_key_jwt is used, the
authorization server MUST support the RS256 signature method for tokens and MAY use other
asymmetric signing methods as defined in the [IANA JSON Web Signatures and Encryption
Algorithms registry] [JWS.JWE.Algs] . The JWS header MUST contain the following fields:

iGov-NL : Additional content

In addition to above signing methods, the Authorization server SHOULD support PS256
signing algorithm [rfc7518] for the signing of the JWT Bearer Tokens.

kid
The key ID of the key pair used to sign this token

EXAMPLE 8
The following sample claim set illustrates the use of the required claims for an access token as
defined in this profile; additional claims MAY be included in the claim set:

{

 "exp": 1418702388,

 "client_id": "55f9f559-2496-49d4-b6c3-351a586b7484",

 "iss": "https://idp-p.example.com/",

 "sub" : "93ff28e3-3982-c34b-f2a4-98bb3d42b277",

 "aud": "api.example.com"

 "jti": "2402f87c-b6ce-45c4-95b0-7a3f2904997f",

 "iat": 1418698788,

 "acr": "myACR"

}

EXAMPLE 9
This example access token has been signed with the server's private key using RS256:

eyJhbGciOiJSUzI1NiJ9.ew0KICAgImV4cCI6IDE0MTg3MDIzODgsDQogICAiYXpwIjo

gIjU1ZjlmNTU5LTI0OTYtNDlkNC1iNmMzLTM1MWE1ODZiNzQ4NCIsDQogICAiaXNzIjo

gImh0dHBzOi8vaWRwLXAuZXhhbXBsZS5jb20vIiwNCiAgICJqdGkiOiAiMjQwMmY4N2M

tYjZjZS00NWM0LTk1YjAtN2EzZjI5MDQ5OTdmIiwNCiAgICJpYXQiOiAxNDE4Njk4Nzg

4LA0KICAgImtpZCI6ICJyc2ExIg0KfQ.iB6Ix8Xeg-L-nMStgE1X75w7zgXabzw7znWU

ECOsXpHfnYYqb-CET9Ah5IQyXIDZ20qEyN98UydgsTpiO1YJDDcZV4f4DgY0ZdG3yBW3

XqwUQwbgF7Gwza9Z4AdhjHjzQx-lChXAyfL1xz0SBDkVbJdDjtXbvaSIyfF7ueWF3M1C

M70-GXuRY4iucKbuytz9e7eW4Egkk4Aagl3iTk9-l5V-tvL6dYu8IlR93GKsaKE8bng0

EZ04xcnq8s4V5Yykuc_NARBJENiKTJM8w3wh7xWP2gvMp39Y0XnuCOLyIx-J1ttX83xm

pXDaLyyY-4HT9XHT9V73fKF8rLWJu9grrA

Refresh tokens SHOULD be signed with [JWS] [rfc7515] using the same private key and contain
the same set of claims as the access tokens.

The authorization server MAY encrypt access tokens and refresh tokens using [JWE] [rfc7516] .
Encrypted access tokens MUST be encrypted using the public key of the protected resource.
Encrypted refresh tokens MUST be encrypted using the authorization server's public key.

iGov-NL : Additional content

How to select or obtain the key to be used for encryption of an access token is out of scope of
this profile. An early draft of "Resource Indicators for OAuth 2.0" exist and COULD be used.
This draft describes usage of the resource parameter to indicate the applicable resource server.

In case the Authorization Server and Resource Server are not operated under responsibility of
the same organization, the bearer token MUST be signed with the use of a PKIoverheid
certificates with OIN.

If the bearer token is also encrypted the bearer token MUST be encrypted with the use of a
PKIoverheid certificates with OIN.

Token introspection allows a protected resource to query the authorization server for metadata
about a token. The protected resource makes a request like the following to the token introspection
endpoint:

3.2.2 Introspection§

The client assertion parameter is structured as described in Section 2.3.3 .

The server responds to an introspection request with a JSON object representing the token
containing the following fields as defined in the token introspection specification:

EXAMPLE 10

POST /introspect HTTP/1.1

User-Agent: Faraday v0.9.0

Content-Type: application/x-www-form-urlencoded

Accept-Encoding: gzip;q=1.0,deflate;q=0.6,identity;q=0.3

Accept: */*

Connection: close

Host: as-va.example.com

Content-Length: 1412

client_assertion=eyJ0eXAiOiJKV1QiLCJhbGciOiJSUzI1NiJ9.eyJpc3M

iOiJhMmMzNjkxOS0wMWZmLTQ4MTAtYTgyOS00MDBmYWQzNTczNTEiLCJzdWIi

OiJhMmMzNjkxOS0wMWZmLTQ4MTAtYTgyOS00MDBmYWQzNTczNTEiLCJhdWQiO

iJodHRwczovL2FzLXZhLmV4YW1wbGUuY29tL3Rva2VuIiwiaWF0IjoxNDE4Nj

k4ODE0LCJleHAiOjE0MTg2OTg4NzQsImp0aSI6IjE0MTg2OTg4MTQvZmNmNDQ

2OGY2MDVjNjE1NjliOWYyNGY5ODJlMTZhZWY2OTU4In0.md7mFdNBaGhiJfE_

pFkAAWA5S-JBvDw9Dk7pOOJEWcL08JGgDFoi9UDbg3sHeA5DrrCYGC_zw7fCG

c9ovpfMB7W6YN53hGU19LtzzFN3tv9FNRq4KIzhK15pns9jckKtui3HZ25L_B

-BnxHe7xNo3kA1M-p51uYYIM0hw1SRi2pfwBKG5O8WntybLjuJ0R3X97zvqHn

2Q7xdVyKlInyNPA8gIZK0HVssXxHOI6yRrAqvdMn_sneDTWPrqVpaR_c7rt8D

dd7drf_nTD1QxESVhYqKTax5Qfd-aq8gZz8gJCzS0yyfQh6DmdhmwgrSCCRC6

BUQkeFNvjMVEYHQ9fr0NA

&client_assertion_type=urn%3Aietf%3Aparams%3Aoauth%3Aclient-assertion-

&client_id=a2c36919-01ff-4810-a829-400fad357351

&token=eyJhbGciOiJSUzI1NiJ9.eyJleHAiOjE0MTg3MDI0MTQsImF1ZCI6W

yJlNzFmYjcyYS05NzRmLTQwMDEtYmNiNy1lNjdjMmJjMDAzN2YiXSwiaXNzIj

oiaHR0cHM6XC9cL2FzLXZhLmV4YW1wbGUuY29tXC8iLCJqdGkiOiIyMWIxNTk

2ZC04NWQzLTQzN2MtYWQ4My1iM2YyY2UyNDcyNDQiLCJpYXQiOjE0MTg2OTg4

MTR9.FXDtEzDLbTHzFNroW7w27RLk5m0wprFfFH7h4bdFw5fR3pwiqejKmdfA

bJvN3_yfAokBv06we5RARJUbdjmFFfRRW23cMbpGQCIk7Nq4L012X_1J4IewO

QXXMLTyWQQ_BcBMjcW3MtPrY1AoOcfBOJPx1k2jwRkYtyVTLWlff6S5gK-ciY

f3b0bAdjoQEHd_IvssIPH3xuBJkmtkrTlfWR0Q0pdpeyVePkMSI28XZvDaGnx

A4j7QI5loZYeyzGR9h70xQLVzqwwl1P0-F_0JaDFMJFO1yl4IexfpoZZsB3Hh

F2vFdL6D_lLeHRy-H2g2OzF59eMIsM_Ccs4G47862w

active
Boolean value indicating whether or not this token is currently active at this authorization
server. Tokens that have been revoked, have expired, or were not issued by this authorization
server are considered non-active.

scope
Space-separated list of OAuth 2.0 scope values represented as a single string.

exp
Timestamp of when this token expires (integer number of seconds since from 1970-01-
01T00:00:00Z UTC)

sub
An opaque string that uniquely identifies the user who authorized this token at this
authorization server (if applicable). This string MAY be diversified per client.

client_id
An opaque string that uniquely identifies the OAuth 2.0 client that requested this token

The authorization server MUST require authentication for both the revocation and introspection
endpoints as described in Section 2.3.2 . Protected resources calling the introspection endpoint
MUST use credentials distinct from any other OAuth client registered at the server.

EXAMPLE 11
The following example is a response from the introspection endpoint:

HTTP/1.1 200 OK

Date: Tue, 16 Dec 2014 03:00:14 GMT

Access-Control-Allow-Origin: *

Content-Type: application/json;charset=ISO-8859-1

Content-Language: en-US

Content-Length: 266

Connection: close

{

 "active": true,

 "scope": "file search visa",

 "exp": 1418702414,

 "sub": "{sub\u003d6WZQPpnQxV, iss\u003dhttps://idp-p.example.com/}"

 "client_id": "e71fb72a-974f-4001-bcb7-e67c2bc0037f",

 "token_type": "Bearer"

}

A protected resource MAY cache the response from the introspection endpoint for a period of time
no greater than half the lifetime of the token. A protected resource MUST NOT accept a token that
is not active according to the response from the introspection endpoint.

The following data will be sent as an Authorization Response to the Authorization Code Flow as
described above. The authentication response is sent via HTTP redirect to the redirect URI
specified in the request.

The following fields MUST be included in the response:

state
REQUIRED. The value of the state parameter passed in in the authentication request. This
value MUST match exactly.

code
REQUIRED. The authorization code, a random string issued by the IdP to be used in the
request to the token endpoint.

PKCE parameters MUST be associated with the "code" as per Section 4.4 of [Proof Key for Code
Exchange by OAuth Public Clients (PKCE)] [rfc7636]

This profile provides RECOMMENDED lifetimes for different types of tokens issued to different
types of clients. Specific applications MAY issue tokens with different lifetimes. Any active token
MAY be revoked at any time.

For clients using the authorization code grant type, access tokens SHOULD have a valid lifetime
no greater than one hour, and refresh tokens (if issued) SHOULD have a valid lifetime no greater
than twenty-four hours.

For public clients access tokens SHOULD have a valid lifetime no greater than fifteen minutes.

3.3 Response to Authorization Requests§

EXAMPLE 12
The following is an example response:

https://client.example.org/cb?state=2ca3359dfbfd0&code=gOIFJ1hV6Rb1sxUd

3.4 Token Lifetimes§

For clients using the client credentials grant type, access tokens SHOULD have a valid lifetime no
greater than six hours.

Scopes define individual pieces of authority that can be requested by clients, granted by resource
owners, and enforced by protected resources. Specific scope values will be highly dependent on the
specific types of resources being protected in a given interface. OpenID Connect, for example,
defines scope values to enable access to different attributes of user profiles.

Authorization servers SHOULD define and document default scope values that will be used if an
authorization request does not specify a requested set of scopes.

To facilitate general use across a wide variety of protected resources, authorization servers
SHOULD allow for the use of arbitrary scope values at runtime, such as allowing clients or
protected resources to use arbitrary scope strings upon registration. Authorization servers MAY
restrict certain scopes from use by dynamically registered systems or public clients.

iGov-NL : Additional content

If there is a need to include resource owner memberships in roles and groups that are relevant
to the resource being accessed, entitlements assigned to the resource owner for the targeted
resource that the authorization server knows about. The authorization server SHOULD include
such attributes as claims in a JWT access token as defined in section 2.2.3.1 of [rfc9068].

In cases where the default scopes provided by Authorization Server are not descriptive enough,
one can make use of the authorization_details claim (see 5.3 Rich Authorization
Requests) which provide extra details and thus greater flexibility for the Resource Server to
handle the request.

3.5 Scopes§

3.5.1 Claims for Authorization Outside of Delegation Scenarios§

Protected Resources grant access to clients if they present a valid access_token with the
appropriate scope. Resource servers trust the authorization server to authenticate the end user and
client appropriately for the importance, risk, and value level of the protected resource scope.

Protected resources that require a higher end-user authentication trust level to access certain
resources MUST associate those resources with a unique scope.

Clients wishing access to these higher level resources MUST include the higher level scope in their
authorization request to the authorization server.

Authorization servers MUST authenticate the end-user with the appropriate trust level before
providing an authorization_code or associated access_token to the client.

Authorization servers MUST only grant access to higher level scope resources to clients that have
permission to request these scope levels. Client authorization requests containing scopes that are
outside their permission MUST be rejected.

Authorization servers MAY set the expiry time (exp) of access_tokens associated with higher level
resources to be shorter than access_tokens for less sensitive resources.

Authorization servers MAY allow a refresh_token issued at a higher level to be used to obtain
an access_token for a lower level resource scope with an extended expiry time. The client MUST
request both the higher level scope and lower level scope in the original authorization request. This
allows clients to continue accessing lower level resources after the higher level resource access has
expired -- without requiring an additional user authentication/authorization.

4. Protected Resource Profile§

4.1 Protecting Resources§

In this manner, protected resources and authorization servers work together to meet risk tolerance
levels for sensitive resources and end-user authentication.

EXAMPLE 13
A resource server has resources classified as "public" and "sensitive". "Sensitive" resources
require the user to perform a two-factor authentication, and those access grants are short-lived:
15 minutes. For a client to obtain access to both "public" and "sensitive" resources, it makes an
authorization request to the authorization server with scope=public+sensitive. The
authorization server authenticates the end-user as required to meet the required trust level (two-
factor authentication or some approved equivalent) and issues an access_token for the
"public" and "sensitive" scopes with an expiry time of 15mins, and a refresh_token for the
"public" scope with an expiry time of 24 hrs. The client can access both "public" and
"sensitive" resources for 15mins with the access_token. When the access_token expires, the
client will NOT be able to access "public" or "sensitive" resources any longer as the
access_token has expired, and must obtain a new access_token. The client makes a access grant
request (as described in [OAuth 2.0] [rfc6749] section 6) with the refresh_token, and the
reduced scope of just "public". The token endpoint validates the refresh_token, and issues a
new access_token for just the "public" scopewith an expiry time set to 24hrs. An access grant
request for a new access_token with the "sensitive" scope would be rejected, and require the
client to get the end-user to re-authenticate/authorize the "sensitive" scope request.

iGov-NL : Additional content

A protected resource MUST accept bearer tokens passed in the authorization header as described in
[rfc6750] . A protected resource MAY also accept bearer tokens passed in the form parameter or
query parameter methods.

EXAMPLE 14

Request:

GET /resource HTTP/1.1

Authorization: Bearer 4f626847-91b1-3417-a91e-c5627f377ae1

Accept: text/plain, application/json, application/*+json, */*

Host: resource.com

Connection: Keep-Alive

User-Agent: Apache-HttpClient/4.2.3 (java 1.5)

Response:

 HTTP/1.1 200 OK

 Content-Type: application/json

 {

 "sub": "248289761001",

 "name": "Jane Doe",

 "given_name": "Jane",

 "family_name": "Doe",

 "preferred_username": "j.doe",

 "email": "janedoe@example.com",

 "picture": "http://example.com/janedoe/me.jpg"

 }

4.2 Connections with Clients§

iGov-NL : Additional content

A Protected Resource under this profile MUST NOT accept access tokens passed using the
query parameter method.

A Protected Resource under this profile SHOULD verify if the client is the Authorized party
(azp) when client authentication is used. See section Advanced OAuth Security Options as
well.

Protected resources MUST define and document which scopes are required for access to the
resource.

Protected resources MUST interpret access tokens using either JWT, token introspection, or a
combination of the two.

The protected resource MUST check the aud (audience) claim, if it exists in the token, to ensure
that it includes the protected resource's identifier. The protected resource MUST ensure that the
rights associated with the token are sufficient to grant access to the resource. For example, this can
be accomplished by querying the scopes and acr associated with the token from the authorization
server's token introspection endpoint.

iGov-NL : Additional content

In case these (optional) attributes are already provided within the token, no introspection is
needed. For further details we encourage to read the OpenID NLGov specification.

A protected resource MUST limit which authorization servers it will accept valid tokens from. A
resource server MAY accomplish this using a whitelist of trusted servers, a dynamic policy engine,
or other means.

The preceding portions of this OAuth profile provide a level of security adequate for a wide range
of use cases, while still maintaining relative ease of implementation and usability for developers,
system administrators, and end users. The following are some additional security measures that can
be employed for use cases where elevated risks justify the use of additional controls at the expense

4.3 Connections with Authorization Servers§

5. Advanced OAuth Security Options§

https://gitdocumentatie.logius.nl/publicatie/api/oidc/

of implementation effort and usability. This section also addresses future security capabilities,
currently in the early draft stages, being added to the OAuth standard suite.

iGov-NL : Additional content

Traditionally, OAuth 2.0 authorization requests are sent via front-channel communication (e.g.,
browser redirects), which exposes sensitive parameters to potential tampering or interception.
PAR [rfc9126] addresses these vulnerabilities by allowing clients to push authorization requests
directly to the authorization server over a secure back-channel. FAPI 2.0 Security Profile also
includes this feature as of version 2.0 . Below are some of the issues it alleviates:

Lack of Integrity and Authenticity: Authorization request parameters sent as URI query
parameters are vulnerable to tampering. Attackers can modify values like scope or
redirect_uri, potentially altering the context of transactions or access permissions. Such
sensitive data in front-channel requests can be intercepted or phished, compromising client
credentials or authorization codes. Attackers can exploit the request_uri parameter by
injecting malicious URIs, leading to unauthorized access or token leakage.

Lack of Confidentiality: Although HTTPS protects the authorization endpoint, request
parameters pass through the user agent in the clear, risking exposure via browser logs,
referrer headers, or other leaks. This is particularly problematic for sensitive data like
personally identifiable information (PII).

Size Limitations: Large authorization requests with fine-grained permissions can exceed
URL size limits, causing processing errors.

Delayed Client Authentication: Traditional flows delay client authentication until after
user interaction, making it harder to detect and reject illegitimate requests early.

To combat this PAR allows clients to push authorization requests directly to the authorization
server over a secure back-channel (HTTPS), effectively preventing tampering. For higher
security, PAR can be combined with JWT-based Request Objects for cryptographic signing and
optional encryption. Furthermore, by moving sensitive data from the front-channel (user agent)
to the back-channel, PAR ensures that request parameters are not exposed to the browser or
third parties, mitigating leakage risks. Also, PAR enables the authorization server to
authenticate the client before any user interaction, allowing early detection and rejection of
illegitimate requests, such as spoofing or tampering attempts.

5.1 Pushed Authorization Requests (PAR)§

https://openid.net/specs/fapi-security-profile-2_0-final.html

OAuth proof of possession tokens are currently defined in a set of drafts under active development
in the Internet Engineering Task Force (IETF) OAuth Working Group.
While a bearer token can be used by anyone in possession of the token, a proof of possession token
is bound to a particular symmetric or asymmetric key issued to, or already possessed by, the client.
The association of the key to the token is also communicated to the protected resource.
a variety of mechanisms for doing this are outlined in the draft [OAuth 2.0 Proof-of-Possession
(PoP) Security Architecture] [I-D.ietf-oauth-pop-architecture] .
When the client presents the token to the protected resource, it is also required to demonstrate
possession of the corresponding key (e.g., by creating a cryptographic hash or signature of the
request).

iGov-NL : Additional content
OAuth 2.0 Demonstrating Proof of Possession (DPoP) is an extension that describes a
technique to cryptographically bind access tokens to a particular client when they are issued.

Proof of Possession tokens are somewhat analogous to the Security Assertion Markup Language's
(SAML's) Holder-of-Key mechanism for binding assertions to user identities.
Proof of possession could prevent a number of attacks on OAuth that entail the interception of
access tokens by unauthorized parties. The attacker would need to obtain the legitimate client's
cryptographic key along with the access token to gain access to protected resources.
Additionally, portions of the HTTP request could be protected by the same signature used in
presentation of the token.
Proof of possession tokens may not provide all of the same protections as PKI authentication, but
they are far less challenging to implement on a distributed scale.

iGov-NL : Additional content
Another implementation of PoP is using TLS with mutual authentication, where the client is
using a PKI authentication. The authorized party (azp) can then be verified with the client
certificate to match the authorized party. As an alternative, the authorization server can include
a cnf parameter in the JWT by the authorization server, see [rfc7800]. The key referenced in
cnf can be validated using a form of client authentication, e.g. using an private_key_jwt or
tls_client_auth[rfc8705].

iGov-NL : Additional content

More detailed information about securely implementing PoP are described in FAPI 2.0 Security
Profile.

5.2 Proof of Possession Tokens (PoP)§

https://www.rfc-editor.org/rfc/rfc9449
https://openid.net/specs/fapi-2_0-security-02.html#name-requirements-for-clients
https://openid.net/specs/fapi-2_0-security-02.html#name-requirements-for-clients

iGov-NL : Additional content

OAuth 2.0 Rich Authorization Requests is an extension that provides a way for clients to
request and obtain fine-grained authorization from resource owners such as end users during
the Authorization Code Flow. In traditional OAuth flows, clients typically request access to a
set of scopes from a Resource Server. The Resource Owner then grants access to the resources
to the client. However, this approach allows limited granular control over the access granted to
a client and can lead to over-provisioning of access, which poses various security risks. With
RAR, clients can pass an authorization_details claim with additional details that allow
for more fine-grained authorization. This also allows for the Resource Server to implement
fine-grained authorization for specific requests. Think of one-time payment approvals,
document signing or requesting or approving (access to a) specific cases or documents.

According to the RFC, authorization_details requires just one field, type, which
determines the allowable contents of the authorization_details. The value is unique for
the described API in the context of the Authorization Server. The underlying RFC defines a set
of common data fields that are designed to be usable across different types of APIs. Fields like
locations, datatypes, identifier and privileges can be added in the
authorization_details parameter.

As mentioned in [RFC9396]:

In case of authorization requests as defined in [RFC6749], implementers MAY consider
using pushed authorization requests [RFC9126] to improve the security, privacy, and
reliability of the flow.

In case more data, or more recent data, is required for fine-grained authorization then one MAY
include the OpenID AuthZEN standard in the authorization_details.

All transactions MUST be protected in transit by TLS as described in [BCP195] .

5.3 Rich Authorization Requests§

6. Security Considerations§

https://www.rfc-editor.org/rfc/rfc9396

iGov-NL : Additional content

In addition to the Best Current Practice for TLS, it is highly RECOMMENDED for all
conforming implementations to incorporate the TLS guidelines from the Dutch NCSC into their
implementations. If these guidelines are applied:

For back-channel communication, the guidelines categorized as "good" MUST be applied.

For front-channel communication, the guidelines for "good" MUST be applied and the
guidelines for "sufficient" MAY be applied, depending on target audience and support
requirements.

Guidelines categorized as "insufficient" MUST NOT be applied and those categorized as
"phase out" SHOULD NOT be used.

Authorization Servers SHOULD take into account device postures when dealing with native apps if
possible. Device postures include characteristics such as a user's lock screen setting, or if the app
has 'root access' (meaning the device OS may be compromised to gain additional privilages not
intended by the vendor), or if there is a device attestation for the app for its validity. Specific
policies or capabilities are outside the scope of this specification.

All clients MUST conform to applicable recommendations found in the Security Considerations
sections of [rfc6749] and those found in the [OAuth 2.0 Threat Model and Security Considerations
document] [rfc6819] .

[BCP195]
Recommendations for Secure Use of Transport Layer Security (TLS) and Datagram Transport
Layer Security (DTLS). Y. Sheffer; R. Holz; P. Saint-Andre. IETF. May 2015. URL:
https://tools.ietf.org/html/bcp195

[HEART.OAuth2]
Health Relationship Trust Profile for OAuth 2.0. J. Richer. OpenID foundation. April 25,
2017. URL: https://openid.net/specs/openid-heart-oauth2-1_0.html

[I-D.ietf-oauth-pop-architecture]
OAuth 2.0 Proof-of-Possession (PoP) Security Architecture. P. Hunt, J. Richer, W. Mills, P.
Mishra, H. Tschofenig. IETF. July 8, 2016. URL: https://tools.ietf.org/html/draft-ietf-oauth-

A. References§

A.1 Normative references§

https://tools.ietf.org/html/bcp195
https://tools.ietf.org/html/bcp195
https://tools.ietf.org/html/bcp195
https://openid.net/specs/openid-heart-oauth2-1_0.html
https://openid.net/specs/openid-heart-oauth2-1_0.html
https://tools.ietf.org/html/draft-ietf-oauth-pop-architecture-08
https://tools.ietf.org/html/draft-ietf-oauth-pop-architecture-08

pop-architecture-08

[ietf-oauth-v2-1-10-refresh-token-grant]
The OAuth 2.1 Authorization Framework: Refresh Token Grant. Dick Hardt, Aaron Parecki,
Torsten Lodderstedt. IETF. January 9, 2024. URL: https://datatracker.ietf.org/doc/html/draft-
ietf-oauth-v2-1-10#name-refresh-token-grant

[iGOV.OAuth2]
International Government Assurance Profile (iGov) for OAuth 2.0. J. Richer, M. Varley, P.
Grassi. OpenID foundation. October 5 2018. URL: https://openid.net/specs/openid-igov-
oauth2-1_0-03.html

[JWS.JWE.Algs]
IANA JSON Web Signatures and Encryption Algorithms registry. Jim Schaad, Jeff Hodges, Joe
Hildebrand, Sean Turner. IANA. URL:
https://www.iana.org/assignments/jose/jose.xhtml#web-signature-encryption-algorithms

[NLGOV.OpenID]
OpenID NLGov. Remco Schaar, Frank van Es, Joris Joosten, Jan Geert Koops. Logius. URL:
https://gitdocumentatie.logius.nl/publicatie/api/oidc/

[OpenID.Core]
OpenID Connect Core 1.0. N. Sakimura, J. Bradley, M. Jones, B. de Medeiros, C. Mortimore.
OpenID foundation. November 8 2014. URL: https://openid.net/specs/openid-connect-core-
1_0.html

[OpenID.Discovery]
OpenID Connect Discovery 1.0. N. Sakimura, J. Bradley, M. Jones, E. Jay. OpenID
foundation. November 8 2014. URL: https://openid.net/specs/openid-connect-discovery-
1_0.html

[OpenID.FAPI2.0]
FAPI 2.0 Security Profile. D. Fett, D. Tonge, J. Heenan. OpenID foundation. February 22
2025. URL: https://openid.net/specs/fapi-security-profile-2_0-final.html

[rfc2119]
Key words for use in RFCs to Indicate Requirement Levels. S. Bradner. IETF. March 1997.
Best Current Practice. URL: https://www.rfc-editor.org/rfc/rfc2119

[rfc4122]
A Universally Unique IDentifier (UUID) URN Namespace. P. Leach; M. Mealling; R. Salz.
IETF. July 2005. Proposed Standard. URL: https://www.rfc-editor.org/rfc/rfc4122

[rfc6749]
The OAuth 2.0 Authorization Framework. D. Hardt, Ed. IETF. October 2012. Proposed
Standard. URL: https://www.rfc-editor.org/rfc/rfc6749

[rfc6750]
The OAuth 2.0 Authorization Framework: Bearer Token Usage. M. Jones; D. Hardt. IETF.
October 2012. Proposed Standard. URL: https://www.rfc-editor.org/rfc/rfc6750

https://tools.ietf.org/html/draft-ietf-oauth-pop-architecture-08
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-v2-1-10#name-refresh-token-grant
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-v2-1-10#name-refresh-token-grant
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-v2-1-10#name-refresh-token-grant
https://openid.net/specs/openid-igov-oauth2-1_0-03.html
https://openid.net/specs/openid-igov-oauth2-1_0-03.html
https://openid.net/specs/openid-igov-oauth2-1_0-03.html
https://www.iana.org/assignments/jose/jose.xhtml#web-signature-encryption-algorithms
https://www.iana.org/assignments/jose/jose.xhtml#web-signature-encryption-algorithms
https://gitdocumentatie.logius.nl/publicatie/api/oidc/
https://gitdocumentatie.logius.nl/publicatie/api/oidc/
https://openid.net/specs/openid-connect-core-1_0.html
https://openid.net/specs/openid-connect-core-1_0.html
https://openid.net/specs/openid-connect-core-1_0.html
https://openid.net/specs/openid-connect-discovery-1_0.html
https://openid.net/specs/openid-connect-discovery-1_0.html
https://openid.net/specs/openid-connect-discovery-1_0.html
https://openid.net/specs/fapi-security-profile-2_0-final.html
https://openid.net/specs/fapi-security-profile-2_0-final.html
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc4122
https://www.rfc-editor.org/rfc/rfc4122
https://www.rfc-editor.org/rfc/rfc6749
https://www.rfc-editor.org/rfc/rfc6749
https://www.rfc-editor.org/rfc/rfc6750
https://www.rfc-editor.org/rfc/rfc6750

[rfc6819]
OAuth 2.0 Threat Model and Security Considerations. T. Lodderstedt, Ed.; M. McGloin; P.
Hunt. IETF. January 2013. Informational. URL: https://www.rfc-editor.org/rfc/rfc6819

[rfc7009]
OAuth 2.0 Token Revocation. T. Lodderstedt, Ed.; S. Dronia; M. Scurtescu. IETF. August
2013. Proposed Standard. URL: https://www.rfc-editor.org/rfc/rfc7009

[rfc7515]
JSON Web Signature (JWS). M. Jones; J. Bradley; N. Sakimura. IETF. May 2015. Proposed
Standard. URL: https://www.rfc-editor.org/rfc/rfc7515

[rfc7516]
JSON Web Encryption (JWE). M. Jones; J. Hildebrand. IETF. May 2015. Proposed Standard.
URL: https://www.rfc-editor.org/rfc/rfc7516

[rfc7517]
JSON Web Key (JWK). M. Jones. IETF. May 2015. Proposed Standard. URL: https://www.rfc-
editor.org/rfc/rfc7517

[rfc7518]
JSON Web Algorithms (JWA). M. Jones. IETF. May 2015. Proposed Standard. URL:
https://www.rfc-editor.org/rfc/rfc7518

[rfc7519]
JSON Web Token (JWT). M. Jones; J. Bradley; N. Sakimura. IETF. May 2015. Proposed
Standard. URL: https://www.rfc-editor.org/rfc/rfc7519

[rfc7522]
Security Assertion Markup Language (SAML) 2.0 Profile for OAuth 2.0 Client Authentication
and Authorization Grants. B. Campbell; C. Mortimore; M. Jones. IETF. May 2015. Proposed
Standard. URL: https://www.rfc-editor.org/rfc/rfc7522

[rfc7523]
JSON Web Token (JWT) Profile for OAuth 2.0 Client Authentication and Authorization
Grants. M. Jones; B. Campbell; C. Mortimore. IETF. May 2015. Proposed Standard. URL:
https://www.rfc-editor.org/rfc/rfc7523

[rfc7591]
OAuth 2.0 Dynamic Client Registration Protocol. J. Richer, Ed.; M. Jones; J. Bradley; M.
Machulak; P. Hunt. IETF. July 2015. Proposed Standard. URL: https://www.rfc-
editor.org/rfc/rfc7591

[rfc7636]
Proof Key for Code Exchange by OAuth Public Clients. N. Sakimura, Ed.; J. Bradley; N.
Agarwal. IETF. September 2015. Proposed Standard. URL: https://www.rfc-
editor.org/rfc/rfc7636

[rfc7662]
OAuth 2.0 Token Introspection. J. Richer, Ed. IETF. October 2015. Proposed Standard. URL:
https://www.rfc-editor.org/rfc/rfc7662

https://www.rfc-editor.org/rfc/rfc6819
https://www.rfc-editor.org/rfc/rfc6819
https://www.rfc-editor.org/rfc/rfc7009
https://www.rfc-editor.org/rfc/rfc7009
https://www.rfc-editor.org/rfc/rfc7515
https://www.rfc-editor.org/rfc/rfc7515
https://www.rfc-editor.org/rfc/rfc7516
https://www.rfc-editor.org/rfc/rfc7516
https://www.rfc-editor.org/rfc/rfc7517
https://www.rfc-editor.org/rfc/rfc7517
https://www.rfc-editor.org/rfc/rfc7517
https://www.rfc-editor.org/rfc/rfc7518
https://www.rfc-editor.org/rfc/rfc7518
https://www.rfc-editor.org/rfc/rfc7519
https://www.rfc-editor.org/rfc/rfc7519
https://www.rfc-editor.org/rfc/rfc7522
https://www.rfc-editor.org/rfc/rfc7522
https://www.rfc-editor.org/rfc/rfc7522
https://www.rfc-editor.org/rfc/rfc7523
https://www.rfc-editor.org/rfc/rfc7523
https://www.rfc-editor.org/rfc/rfc7523
https://www.rfc-editor.org/rfc/rfc7591
https://www.rfc-editor.org/rfc/rfc7591
https://www.rfc-editor.org/rfc/rfc7591
https://www.rfc-editor.org/rfc/rfc7636
https://www.rfc-editor.org/rfc/rfc7636
https://www.rfc-editor.org/rfc/rfc7636
https://www.rfc-editor.org/rfc/rfc7662
https://www.rfc-editor.org/rfc/rfc7662

[rfc7800]
Proof-of-Possession Key Semantics for JSON Web Tokens (JWTs). M. Jones; J. Bradley; H.
Tschofenig. IETF. April 2016. Proposed Standard. URL: https://www.rfc-
editor.org/rfc/rfc7800

[RFC8174]
Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words. B. Leiba. IETF. May 2017.
Best Current Practice. URL: https://www.rfc-editor.org/rfc/rfc8174

[rfc8414]
OAuth 2.0 Authorization Server Metadata. M. Jones; N. Sakimura; J. Bradley. IETF. June
2018. Proposed Standard. URL: https://www.rfc-editor.org/rfc/rfc8414

[rfc8693]
OAuth 2.0 Token Exchange. M. Jones; A. Nadalin; B. Campbell, Ed.; J. Bradley; C.
Mortimore. IETF. January 2020. Proposed Standard. URL: https://www.rfc-
editor.org/rfc/rfc8693

[rfc8705]
OAuth 2.0 Mutual-TLS Client Authentication and Certificate-Bound Access Tokens. B.
Campbell; J. Bradley; N. Sakimura; T. Lodderstedt. IETF. February 2020. Proposed Standard.
URL: https://www.rfc-editor.org/rfc/rfc8705

[rfc9068]
JSON Web Token (JWT) Profile for OAuth 2.0 Access Tokens. V. Bertocci. IETF. October
2021. Proposed Standard. URL: https://www.rfc-editor.org/rfc/rfc9068

[rfc9126]
OAuth 2.0 Pushed Authorization Requests. T. Lodderstedt; B. Campbell; N. Sakimura; D.
Tonge; F. Skokan. IETF. September 2021. Proposed Standard. URL: https://www.rfc-
editor.org/rfc/rfc9126

[RFC9396]
OAuth 2.0 Rich Authorization Requests. T. Lodderstedt; J. Richer; B. Campbell. IETF. May
2023. Proposed Standard. URL: https://www.rfc-editor.org/rfc/rfc9396

[RFC9449]
OAuth 2.0 Demonstrating Proof of Possession (DPoP). D. Fett; B. Campbell; J. Bradley; T.
Lodderstedt; M. Jones; D. Waite. IETF. September 2023. Proposed Standard. URL:
https://www.rfc-editor.org/rfc/rfc9449

↑

https://www.rfc-editor.org/rfc/rfc7800
https://www.rfc-editor.org/rfc/rfc7800
https://www.rfc-editor.org/rfc/rfc7800
https://www.rfc-editor.org/rfc/rfc8174
https://www.rfc-editor.org/rfc/rfc8174
https://www.rfc-editor.org/rfc/rfc8414
https://www.rfc-editor.org/rfc/rfc8414
https://www.rfc-editor.org/rfc/rfc8693
https://www.rfc-editor.org/rfc/rfc8693
https://www.rfc-editor.org/rfc/rfc8693
https://www.rfc-editor.org/rfc/rfc8705
https://www.rfc-editor.org/rfc/rfc8705
https://www.rfc-editor.org/rfc/rfc9068
https://www.rfc-editor.org/rfc/rfc9068
https://www.rfc-editor.org/rfc/rfc9126
https://www.rfc-editor.org/rfc/rfc9126
https://www.rfc-editor.org/rfc/rfc9126
https://www.rfc-editor.org/rfc/rfc9396
https://www.rfc-editor.org/rfc/rfc9396
https://www.rfc-editor.org/rfc/rfc9449
https://www.rfc-editor.org/rfc/rfc9449

