
NL GOV profile for CloudEvents 1.1
Notificatieservices

Logius Standard
Proposed version January 07, 2026

This version:
https://gitdocumentatie.logius.nl/publicatie/notificatieservices/cloudevents-nl/1.1/

Latest published version:
https://gitdocumentatie.logius.nl/publicatie/notificatieservices/cloudevents-nl/

Latest editor's draft:
https://logius-standaarden.github.io/NL-GOV-profile-for-CloudEvents/

Previous version:
https://gitdocumentatie.logius.nl/publicatie/notificatieservices/cloudevents-nl/1.0/

Editors:
Alexander Green (Logius)
Stas Mironov (Logius)

Authors:
Ad Gerrits (VNG Realisatie)
Gershon Jansen (VNG Realisatie)
Jeanot Bijpost (VNG Realisatie)

Participate:
GitHub Logius-standaarden/NL-GOV-profile-for-CloudEvents
File an issue
Commit history
Pull requests

This document is also available in these non-normative format: PDF

This document is licensed under
Creative Commons Attribution 4.0 International Public License

Status of This Document

This is the definitive concept of this document. Edits resulting from consultations have been
applied.

Lo
gi

us
 S

ta
nd

ar
d

- P
ro

po
se

d
ve

rs
io

n

https://www.logius.nl/onze-dienstverlening/standaarden
https://gitdocumentatie.logius.nl/publicatie/notificatieservices/cloudevents-nl/1.1/
https://gitdocumentatie.logius.nl/publicatie/notificatieservices/cloudevents-nl/
https://logius-standaarden.github.io/NL-GOV-profile-for-CloudEvents/
https://gitdocumentatie.logius.nl/publicatie/notificatieservices/cloudevents-nl/1.0/
https://logius.nl/standaarden
https://logius.nl/standaarden
https://www.vngrealisatie.nl/
https://www.vngrealisatie.nl/
https://www.vngrealisatie.nl/
https://github.com/Logius-standaarden/NL-GOV-profile-for-CloudEvents/
https://github.com/Logius-standaarden/NL-GOV-profile-for-CloudEvents/issues/
https://github.com/Logius-standaarden/NL-GOV-profile-for-CloudEvents/commits/
https://github.com/Logius-standaarden/NL-GOV-profile-for-CloudEvents/pulls/
http://localhost:8080/notificatieservices-cloudevents-nl-1.1.pdf
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode

1.

2.
2.1
2.2
2.2.1

2.2.2

2.2.3

2.2.4

2.2.5

2.2.6

2.2.7

2.2.8

2.2.9

2.2.10

2.2.11

2.2.12

2.2.13

3.
3.1
3.2
3.3
3.3.1

3.3.2

3.3.3

3.3.4

3.4
3.4.1
3.4.1.1

3.4.2
3.4.2.1

3.4.3

Table of Contents

Status of This Document

Conformance

Abstract

Overview

Notations and Terminology
Notational Conventions
Terminology

Data Schema

Occurrence

Event

Producer

Source

Consumer

Intermediary

Context

Data

Event Format

Message

Protocol

Protocol Binding

Context Attributes
Attribute Naming Convention
Type System
REQUIRED Attributes

id

source

specversion

type

OPTIONAL Attributes
datacontenttype

CloudEvents-NL

dataschema
CloudEvents-NL

subject

3.4.3.1

3.4.4
3.4.4.1

3.4.5

3.4.6
3.4.6.1

3.4.7
3.4.7.1

3.4.7.2

3.5
3.5.1
3.5.1.1

3.5.1.2

3.5.1.2.1

3.5.1.2.2

3.5.1.3

4.

5.

6.

7.

A.

B.

C.
C.1

CloudEvents-NL

time
CloudEvents-NL

Extension Context Attributes

Defining Extensions
CloudEvents-NL

dataref
Example

CloudEvents-NL

Sequence
Attributes

sequence

sequencetype

SequenceType Values

Integer

CloudEvents-NL

Event Data

Size Limits

Advanced CloudEvents Security Options

Example

Use of JSON, HTTP and Webhook

List of Figures

References
Normative references

As well as sections marked as non-normative, all authoring guidelines, diagrams, examples, and
notes in this specification are non-normative. Everything else in this specification is normative.

The key words MAY, MUST, MUST NOT, OPTIONAL, RECOMMENDED, REQUIRED, SHALL,
SHALL NOT, SHOULD, and SHOULD NOT in this document are to be interpreted as described in
BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as shown here.

Conformance§

https://www.rfc-editor.org/info/bcp14

This document is an adaptation of the CloudEvents specification for describing event data in
common formats to provide interoperability across services, platforms and systems. This does not
indicate an endorsement by the CloudEvents working group. As far as the specification is
incorporated in this document, the CloudEvents License applies.

NOTE

Het Nederlandse profiel op Cloudevents is als standaard in beheer bij Logius.

Het profiel is ontwikkeld door VNG in opdracht van BZK. Ontwikkeling van het profiel is als
project afgesloten medio 2022 waarna het door VNG is overgedragen om in beheer genomen te
worden.

Abstract

Abstract
CloudEvents is a vendor neutral specification for defining the format of event data. This
specification profiles the CloudEvents specification to standardize the automated exchange of
information about events, specifically applicable to the Dutch government. The Governance of this
standard is described by the API-Standaarden beheermodel published by Logius.

This profile is based on CloudEvents - Version 1.0.1 as published by the Serverless Working Group
of the Cloud Native Computing Foundation. It should be considered a fork of this profile as the
CloudEvents specification is geared more towards generic use and in the Netherlands we want to
add a number of requirements for the Dutch situation with the goal to agree on how to use the
CloudEvents specification.

The goal of the CloudEvents specification is to define interoperability of event systems that allow
services to produce or consume events, where the producer and consumer can be developed and
deployed independently. The ability to keep services loosely coupled within a distributed system
such as the Dutch government makes it possible to work more often and in a better event-driven
way. Using the CE standard supports this and makes maximum use of existing worldwide
standards.

Dutch government profile for CloudEvents§

https://github.com/cloudevents/spec
https://github.com/cloudevents/spec/blob/70823088e52b393b4251abd1ab03b6cfa233d427/LICENSE
https://gitdocumentatie.logius.nl/publicatie/api/beheermodel/
https://github.com/cloudevents/spec/blob/v1.0.1/spec.md
https://github.com/cncf/wg-serverless
https://www.cncf.io/

The CloudEvents standard is based on the principle of not imposing more requirements on the
parties involved than necessary. This means, among other things, that there are no requirements for
how consumers should interpret and process received notifications. Constraints pertaining to
consumers are therefore more often formulated with 'MAY' than with 'SHOULD' or 'MUST' (e.g.
"Consumers MAY assume that Events with identical source and id are duplicates")) The GOV NL
profile endorses this principle. In practice, the parties involved are of course allowed to apply
stricter constraints.

Starting with chapter Introduction we follow the structure of the CloudEvents profile. Where we do
not use content from CloudEvents we use strikethrough to indicate it is not part of CloudEvents-
NL. Where we have added more specific requirements for the Dutch situation this is indicated with
the CloudEvents-NL tag.

Figure 1 Publish-subscribe pattern

The basic pattern for use cases describes a (public/governmental) application in the role of
'producer' that publishes 'events': data records expressing an occurrence and its context. Published
events can be consumed by applications in the role of 'consumer'. Consumers subscribe to certain
types of events. There may be one or more applications in the role of 'intermediary' that take care
of routing events to consumers based on contextual information. This is akin to the publish-
subscribe pattern.

Within this context, it concerns standardization of the automated exchange of event information via
applications. In practice, agreements at business level are often also required between the parties
involved.

Usecases§

Introduction§

https://en.wikipedia.org/wiki/Publish%E2%80%93subscribe_pattern
https://en.wikipedia.org/wiki/Publish%E2%80%93subscribe_pattern

Events are everywhere. However, event producers tend to describe events differently.

The lack of a common way of describing events means developers are constantly re-learning how
to consume events. This also limits the potential for libraries, tooling and infrastructure to aid the
delivery of event data across environments, like SDKs, event routers or tracing systems. The
portability and productivity that can be achieved from event data is hindered overall.

CloudEvents is a specification for describing event data in common formats to provide
interoperability across services, platforms and systems.

Event Formats specify how to serialize a CloudEvent with certain encoding formats. Compliant
CloudEvents implementations that support those encodings MUST adhere to the encoding rules
specified in the respective event format. All implementations MUST support the JSON format.

For more information on the history, development and design rationale behind the specification,
see the CloudEvents Primer document.

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD",
"SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be
interpreted as described in RFC 2119.

For clarity, when a feature is marked as "OPTIONAL" this means that it is OPTIONAL for both the
Producer and Consumer of a message to support that feature. In other words, a producer can
choose to include that feature in a message if it wants, and a consumer can choose to support that
feature if it wants. A consumer that does not support that feature will then silently ignore that part
of the message. The producer needs to be prepared for the situation where a consumer ignores that
feature. An Intermediary SHOULD forward OPTIONAL attributes.

This specification defines the following terms:

1. Overview§

2. Notations and Terminology§

2.1 Notational Conventions§

2.2 Terminology§

https://github.com/cloudevents/spec/blob/v1.0.1/json-format.md
https://github.com/cloudevents/spec/blob/v1.0.1/primer.md
https://tools.ietf.org/html/rfc2119

The "dataschema" refers to the technical specification of the attributes in a given event. Currently
v1.0.2 of CloudEvents specifies various different formats for documenting the dataschema.

"Dataschema" attribute is expected to be informational, largely to be used during development and
by tooling that is able to provide diagnostic information over arbitrary CloudEvents with a data
content type understood by that tooling. For further specifications, see 3.4.2 dataschema.]

An "occurrence" is the capture of a statement of fact during the operation of a software system.
This might occur because of a signal raised by the system or a signal being observed by the system,
because of a state change, because of a timer elapsing, or any other noteworthy activity. For
example, a device might go into an alert state because the battery is low, or a virtual machine is
about to perform a scheduled reboot.

An "event" is a data record expressing an occurrence and its context. Events are routed from an
event producer (the source) to interested event consumers. The routing can be performed based on
information contained in the event, but an event will not identify a specific routing destination.
Events will contain two types of information: the Event Data representing the Occurrence and
Context metadata providing contextual information about the Occurrence. A single occurrence
MAY result in more than one event.

The "producer" is a specific instance, process or device that creates the data structure describing
the CloudEvent.

2.2.1 Data Schema§

2.2.2 Occurrence§

2.2.3 Event§

2.2.4 Producer§

https://github.com/cloudevents/spec/tree/v1.0.2/cloudevents/formats

The "source" is the context in which the occurrence happened. In a distributed system it might
consist of multiple Producers. If a source is not aware of CloudEvents, an external producer creates
the CloudEvent on behalf of the source.

A "consumer" receives the event and acts upon it. It uses the context and data to execute some
logic, which might lead to the occurrence of new events.

An "intermediary" receives a message containing an event for the purpose of forwarding it to the
next receiver, which might be another intermediary or a Consumer. A typical task for an
intermediary is to route the event to receivers based on the information in the Context.

Context metadata will be encapsulated in the Context Attributes. Tools and application code can
use this information to identify the relationship of Events to aspects of the system or to other
Events.

Domain-specific information about the occurrence (i.e. the payload). This might include
information about the occurrence, details about the data that was changed, or more. See the Event
Data section for more information.

2.2.5 Source§

2.2.6 Consumer§

2.2.7 Intermediary§

2.2.8 Context§

2.2.9 Data§

An Event Format specifies how to serialize a CloudEvent as a sequence of bytes. Stand-alone event
formats, such as the JSON format, specify serialization independent of any protocol or storage
medium. Protocol Bindings MAY define formats that are dependent on the protocol.

Events are transported from a source to a destination via messages.

A "structured-mode message" is one where the event is fully encoded using a stand-alone event
format and stored in the message body.

A "binary-mode message" is one where the event data is stored in the message body, and event
attributes are stored as part of message meta-data.

Messages can be delivered through various industry standard protocol (e.g. HTTP, AMQP, MQTT,
SMTP), open-source protocols (e.g. Kafka, NATS), or platform/vendor specific protocols (AWS
Kinesis, Azure Event Grid).

A protocol binding describes how events are sent and received over a given protocol.

Protocol bindings MAY choose to use an Event Format to map an event directly to the transport
envelope body, or MAY provide additional formatting and structure to the envelope. For example, a
wrapper around a structured-mode message might be used, or several messages could be batched
together into a transport envelope body.

2.2.10 Event Format§

2.2.11 Message§

2.2.12 Protocol§

2.2.13 Protocol Binding§

https://github.com/cloudevents/spec/blob/v1.0.1/json-format.md

Every CloudEvent conforming to this specification MUST include context attributes designated as
REQUIRED, MAY include one or more OPTIONAL context attributes and MAY include one or
more extension attributes.

These attributes, while descriptive of the event, are designed such that they can be serialized
independent of the event data. This allows for them to be inspected at the destination without
having to deserialize the event data.

The CloudEvents specifications define mappings to various protocols and encodings, and the
accompanying CloudEvents SDK targets various runtimes and languages. Some of these treat
metadata elements as case-sensitive while others do not, and a single CloudEvent might be routed
via multiple hops that involve a mix of protocols, encodings, and runtimes. Therefore, this
specification limits the available character set of all attributes such that case-sensitivity issues or
clashes with the permissible character set for identifiers in common languages are prevented.

CloudEvents attribute names MUST consist of lower-case letters ('a' to 'z') or digits ('0' to '9') from
the ASCII character set. Attribute names SHOULD be descriptive and terse and SHOULD NOT
exceed 20 characters in length.

The following abstract data types are available for use in attributes. Each of these types MAY be
represented differently by different event formats and in protocol metadata fields. This
specification defines a canonical string-encoding for each type that MUST be supported by all
implementations.

Boolean - a boolean value of "true" or "false".

String encoding: a case-sensitive value of true or false.

Integer - A whole number in the range -2,147,483,648 to +2,147,483,647 inclusive. This is
the range of a signed, 32-bit, twos-complement encoding. Event formats do not have to use
this encoding, but they MUST only use Integer values in this range.

3. Context Attributes§

3.1 Attribute Naming Convention§

3.2 Type System§

String encoding: Integer portion of the JSON Number per RFC 7159, Section 6

String - Sequence of allowable Unicode characters. The following characters are
disallowed:

the "control characters" in the ranges U+0000-U+001F and U+007F-U+009F (both
ranges inclusive), since most have no agreed-on meaning, and some, such as U+000A
(newline), are not usable in contexts such as HTTP headers.

code points identified as noncharacters by Unicode.

code points identifying Surrogates, U+D800-U+DBFF and U+DC00-U+DFFF, both
ranges inclusive, unless used properly in pairs. Thus (in JSON notation) "\uDEAD" is
invalid because it is an unpaired surrogate, while "\uD800\uDEAD" would be legal.

Binary - Sequence of bytes.

String encoding: Base64 encoding per RFC4648.

URI - Absolute uniform resource identifier.

String encoding: Absolute URI as defined in RFC 3986 Section 4.3.

URI-reference - Uniform resource identifier reference.

String encoding: URI-reference as defined in RFC 3986 Section 4.1.

Timestamp - Date and time expression using the Gregorian Calendar.

String encoding: RFC 3339.

All context attribute values MUST be of one of the types listed above. Attribute values MAY be
presented as native types or canonical strings.

A strongly-typed programming model that represents a CloudEvent or any extension MUST be able
to convert from and to the canonical string-encoding to the runtime/language native type that best
corresponds to the abstract type.

For example, the time attribute might be represented by the language's native datetime type in a
given implementation, but it MUST be settable providing an RFC3339 string, and it MUST be
convertible to an RFC3339 string when mapped to a header of an HTTP message.

A CloudEvents protocol binding or event format implementation MUST likewise be able to convert
from and to the canonical string-encoding to the corresponding data type in the encoding or in
protocol metadata fields.

An attribute value of type Timestamp might indeed be routed as a string through multiple hops
and only materialize as a native runtime/language type at the producer and ultimate consumer. The
Timestamp might also be routed as a native protocol type and might be mapped to/from the
respective language/runtime types at the producer and consumer ends, and never materialize as a
string.

https://tools.ietf.org/html/rfc7159#section-6
http://www.unicode.org/faq/private_use.html#noncharacters
https://tools.ietf.org/html/rfc4648
https://tools.ietf.org/html/rfc3986#section-4.3
https://tools.ietf.org/html/rfc3986#section-4.1
https://tools.ietf.org/html/rfc3339

The choice of serialization mechanism will determine how the context attributes and the event data
will be serialized. For example, in the case of a JSON serialization, the context attributes and the
event data might both appear within the same JSON object.

The following attributes are REQUIRED to be present in all CloudEvents:

Type: String

Description: Identifies the event. Producers MUST ensure that source + id is unique for each
distinct event. If a duplicate event is re-sent (e.g. due to a network error) it MAY have the same
id. Consumers MAY assume that Events with identical source and id are duplicates.

Constraints:

REQUIRED

MUST be a non-empty string

MUST be unique within the scope of the producer

Examples:

An ID counter maintained by the producer

A UUID

3.3 REQUIRED Attributes§

3.3.1 id§

CloudEvents-NL: Additional content

Constraints:

If an ID is available that can persistently identify the event, producers MUST use that
ID. For example so that consumers may use id to request information about the
event from the source.

If no ID is available that can persistently identify the event producers SHOULD use a
random ID:

SHOULD use a UUID.

MUST describe the limitations (e.g., that it's just a random ID and has no
relation to the occurrence event) in the 3.4.2 dataschema attribute.

Examples:

'doc2021033441' (ID of the document created as a result of an event that occurred).

'f3dce042-cd6e-4977-844d-05be8dce7cea' (UUID generated with the sole function of
being able to uniquely identify the event.

Type: URI-reference

Description: Identifies the context in which an event happened. Often this will include
information such as the type of the event source, the organization publishing the event or the
process that produced the event. The exact syntax and semantics behind the data encoded in
the URI is defined by the event producer.

Producers MUST ensure that source + id is unique for each distinct event.

An application MAY assign a unique source to each distinct producer, which makes it easy to
produce unique IDs since no other producer will have the same source. The application MAY
use UUIDs, URNs, DNS authorities or an application-specific scheme to create unique
source identifiers.

A source MAY include more than one producer. In that case the producers MUST collaborate
to ensure that source + id is unique for each distinct event.

Constraints:

REQUIRED

MUST be a non-empty URI-reference

3.3.2 source§

https://en.wikipedia.org/wiki/Universally_unique_identifier

An absolute URI is RECOMMENDED

Examples

Internet-wide unique URI with a DNS authority.

https://github.com/cloudevents

mailto:cncf-wg-serverless@lists.cncf.io

Universally-unique URN with a UUID:

urn:uuid:6e8bc430-9c3a-11d9-9669-0800200c9a66

Application-specific identifiers

/cloudevents/spec/pull/123

/sensors/tn-1234567/alerts

1-555-123-4567

https://github.com/cloudevents
mailto:cncf-wg-serverless@lists.cncf.io

CloudEvents-NL: Additional content

Constraints:

SHOULD be a URN notation with 'nld' as namespace identifier.

SHOULD contain consecutive a unique identifier of:

the organization that publishes the event

the source system that publishes the event.

involved organizations SHOULD agree on how organizations and systems are
uniquely identified (e.g. via the use of OIN, KVK-nummer or for organization
identification);

In line with API Design Rules:

SHOULD use the "organisatie-identificatienummer" (OIN) for identifying
Dutch government organizations

SHOULD use the KvK-nummer for identifying Dutch non-government
organizations (companies, associations, foundations etc...)

SHOULD use the eIDAS legal identifier in the EU context. national,
European or worldwide)

SHOULD choose an abstraction level for the source that can be used
sustainably; even if the initial scope expands (e.g., scope creep from domain
specific to more general categorization).

MUST NOT be used to reference an external data location (see 3.4.7 dataref).

Examples:

urn:nld:oin:00000001823288444000:systeem:BRP-component

urn:nld:kvknr:09220932.burgerzakensysteem

urn:nld:gemeente-nijmegen.burgerzakensysteem

urn:nld:gemeente-Bergen%20%28L%29.burgerzakensysteem Comment: The use of
(unique) descriptions increases recognisability, but also has disadvantages such as
occurred changes or required encoding (like in the above example where "Bergen
(L)" requires encoding).

Type: String

3.3.3 specversion§

https://en.wikipedia.org/wiki/Uniform_Resource_Name
https://gitdocumentatie.logius.nl/publicatie/api/adr/2.1
https://www.logius.nl/domeinen/toegang/organisatie-identificatienummer
https://www.kvk.nl/starten/kvk-nummer-alles-wat-je-moet-weten/
https://afsprakenstelsel.etoegang.nl/

Description: The version of the CloudEvents specification which the event uses. This enables
the interpretation of the context. Compliant event producers MUST use a value of 1.0 when
referring to this version of the specification.

Currently, this attribute will only have the 'major' and 'minor' version numbers included in it.
This allows for 'patch' changes to the specification to be made without changing this
property's value in the serialization. Note: for 'release candidate' releases a suffix might be
used for testing purposes.

Constraints:

REQUIRED

MUST be a non-empty string

Type: String

Description: This attribute contains a value describing the type of event related to the
originating occurrence. Often this attribute is used for routing, observability, policy
enforcement, etc. The format of this is producer defined and might include information such
as the version of the type - see Versioning of CloudEvents in the Primer for more
information.

Constraints:

REQUIRED

MUST be a non-empty string

SHOULD be prefixed with a reverse-DNS name. The prefixed domain dictates the
organization which defines the semantics of this event type.

Examples

com.github.pull_request.opened

com.example.object.deleted.v2

3.3.4 type§

https://github.com/cloudevents/spec/blob/v1.0.1/primer.md#versioning-of-cloudevents

CloudEvents-NL: Additional content

Constraints:

MUST be Reverse domain name notation

MAY be further specified by adding a suffix (for example:
nl.brp.verhuizing.binnengemeentelijk instead of
nl.brp.binnengemeentelijke-verhuizing)

Producers MUST facilitate consumers to request additional information on the type and
adequatly explain the exact meaning.

SHOULD stay the same when a CloudEvent's data changes in a backwardly-compatible
way.

SHOULD change when a CloudEvent's data changes in a backwardly-incompatible way.

The producer SHOULD produce both the old event and the new event for some time
(potentially forever) in order to avoid disrupting consumers.

The producer decides if versioning is used.

If versioning is used, the type attribute MUST only include a single version number,
prefixed by the letter v

In descending order of preference one SHOULD use the name of a:

data source (for example: 'nl.brp.persoon-verhuisd)

domain (for example: nl.natuurlijke-personen.persoon-verhuisd); for domain
designation plural MUST be used.

law or rule (for example: nl.amsterdam.erfpacht.overdracht)

Names of organizations SHOULD NOT be used (because they are not time invariant).

The following attributes are OPTIONAL to appear in CloudEvents. See the Notational Conventions
section for more information on the definition of OPTIONAL.

Type: String per RFC 2046

3.4 OPTIONAL Attributes§

3.4.1 datacontenttype§

https://en.wikipedia.org/wiki/Reverse_domain_name_notation
https://tools.ietf.org/html/rfc2046

Description: Content type of data value. This attribute enables data to carry any type of
content, whereby format and encoding might differ from that of the chosen event format. For
example, an event rendered using the JSON envelope format might carry an XML payload in
data, and the consumer is informed by this attribute being set to "application/xml". The rules
for how data content is rendered for different datacontenttype values are defined in the
event format specifications; for example, the JSON event format defines the relationship in
section 3.1.

For some binary mode protocol bindings, this field is directly mapped to the respective
protocol's content-type metadata property. Normative rules for the binary mode and the
content-type metadata mapping can be found in the respective protocol

In some event formats the datacontenttype attribute MAY be omitted. For example, if a
JSON format event has no datacontenttype attribute, then it is implied that the data is a
JSON value conforming to the "application/json" media type. In other words: a JSON-format
event with no datacontenttype is exactly equivalent to one with
datacontenttype="application/json".

When translating an event message with no datacontenttype attribute to a different format
or protocol binding, the target datacontenttype SHOULD be set explicitly to the implied
datacontenttype of the source.

Constraints:

OPTIONAL

If present, MUST adhere to the format specified in RFC 2046

For Media Type examples see IANA Media Types

Constraints:

JSON-format SHOULD be used (see API Design Rules). Part of this is the intention to name
JSON as the primary representation format for APIs. Because APIs play an important role in
communicating events (e.g., when using the webhook pattern) the JSON format is preferred to
use for payload data).

3.4.1.1 CloudEvents-NL§

https://github.com/cloudevents/spec/blob/v1.0.1/json-format.md#3-envelope
https://github.com/cloudevents/spec/blob/v1.0.1/json-format.md#31-handling-of-data
https://tools.ietf.org/html/rfc2046
http://www.iana.org/assignments/media-types/media-types.xhtml
https://gitdocumentatie.logius.nl/publicatie/api/adr/2.1

Type: URI

Description: Identifies the schema that data adheres to. Incompatible changes to the schema
SHOULD be reflected by a different URI. See Versioning of CloudEvents in the Primer for
more information.

Constraints:

OPTIONAL

If present, MUST be a non-empty URI

Constraints:

It SHOULD be prevented that different schedules arise for the same data.

The dataschema attribute is expected to be informational, largely to be used during
development and by tooling that is able to provide diagnostic information over arbitrary
CloudEvents with a data content type understood by that tooling (see: The role of the
dataschema attribute within versioning

Type: String

Description: This describes the subject of the event in the context of the event producer
(identified by source). In publish-subscribe scenarios, a subscriber will typically subscribe to
events emitted by a source, but the source identifier alone might not be sufficient as a
qualifier for any specific event if the source context has internal sub-structure.

Identifying the subject of the event in context metadata (opposed to only in the data payload)
is particularly helpful in generic subscription filtering scenarios where middleware is unable
to interpret the data content. In the above example, the subscriber might only be interested in
blobs with names ending with '.jpg' or '.jpeg' and the subject attribute allows for
constructing a simple and efficient string-suffix filter for that subset of events.

3.4.2 dataschema§

3.4.2.1 CloudEvents-NL§

3.4.3 subject§

https://github.com/cloudevents/spec/blob/v1.0.1/primer.md#versioning-of-cloudevents
https://github.com/cloudevents/spec/blob/v1.0.1/primer.md#the-role-of-the-dataschema-attribute-within-versioning
https://github.com/cloudevents/spec/blob/v1.0.1/primer.md#the-role-of-the-dataschema-attribute-within-versioning

Constraints:

OPTIONAL

If present, MUST be a non-empty string

Example:

A subscriber might register interest for when new blobs are created inside a blob-storage
container. In this case, the event source identifies the subscription scope (storage
container), the type identifies the "blob created" event, and the id uniquely identifies
the event instance to distinguish separate occurrences of a same-named blob having been
created; the name of the newly created blob is carried in subject:

source: https://example.com/storage/tenant/container

subject: mynewfile.jpg

Constraints:

Decision on whether or not to use the attribute and/or the exact interpretation is postponed. To
be determined partly on the basis of future agreements about subscription and filtering.

Example:

source: urn:nld:oin:00000001823288444000:systeem:BRP-component

type: nl.brp.persoon-gehuwd

subject: 999990342 (citizen service number)

Type: Timestamp

Description: Timestamp of when the occurrence happened. If the time of the occurrence
cannot be determined then this attribute MAY be set to some other time (such as the current
time) by the CloudEvents producer, however all producers for the same source MUST be
consistent in this respect. In other words, either they all use the actual time of the occurrence
or they all use the same algorithm to determine the value used.

Constraints:

OPTIONAL

3.4.3.1 CloudEvents-NL§

3.4.4 time§

If present, MUST adhere to the format specified in RFC 3339

The time the event was logged SHOULD be used (in many cases this is the only time that can
be determined unambiguously).

The exact meaning of time MUST be clearly documented.

The time when an event occurred in reality SHOULD NOT be used (if there is a need for this
among consumers, this can be included in payload data).

If the time when an event occurred in reality is needed for things like routing or filtering, it
can be included as a context attribute by the producer.

A CloudEvent MAY include any number of additional context attributes with distinct names, known
as "extension attributes". Extension attributes MUST follow the same naming convention and use
the same type system as standard attributes. Extension attributes have no defined meaning in this
specification, they allow external systems to attach metadata to an event, much like HTTP custom
headers.

Extension attributes are always serialized according to binding rules like standard attributes.
However this specification does not prevent an extension from copying event attribute values to
other parts of a message, in order to interact with non-CloudEvents systems that also process the
message. Extension specifications that do this SHOULD specify how receivers are to interpret
messages if the copied values differ from the cloud-event serialized values.

See CloudEvent Attributes Extensions for additional information concerning the use and definition
of extensions.

The definition of an extension SHOULD fully define all aspects of the attribute - e.g. its name,
type, semantic meaning and possible values. New extension definitions SHOULD use a name that
is descriptive enough to reduce the chances of name collisions with other extensions. In particular,
extension authors SHOULD check the documented extensions document for the set of known
extensions - not just for possible name conflicts but for extensions that might be of interest.

3.4.4.1 CloudEvents-NL§

3.4.5 Extension Context Attributes§

3.4.6 Defining Extensions§

https://tools.ietf.org/html/rfc3339
https://github.com/cloudevents/spec/blob/v1.0.1/primer.md#cloudevent-attribute-extensions
https://github.com/cloudevents/spec/blob/v1.0.1/documented-extensions.md

Many protocols support the ability for senders to include additional metadata, for example as
HTTP headers. While a CloudEvents receiver is not mandated to process and pass them along, it is
RECOMMENDED that they do so via some mechanism that makes it clear they are non-
CloudEvents metadata.

Here is an example that illustrates the need for additional attributes. In many IoT and enterprise use
cases, an event could be used in a serverless application that performs actions across multiple types
of events. To support such use cases, the event producer will need to add additional identity
attributes to the "context attributes" which the event consumers can use to correlate this event with
the other events. If such identity attributes happen to be part of the event "data", the event producer
would also add the identity attributes to the "context attributes" so that event consumers can easily
access this information without needing to decode and examine the event data. Such identity
attributes can also be used to help intermediate gateways determine how to route the events.

Two of the extension attributes included by CloudEvents ('dataref' and 'sequence') are
included as optional attributes in the CloudEvents-NL profile because it is foreseen that there
is often a need to use these attributes.

Extension attributes should be kept minimal to ensure the CloudEvent can be properly
serialized and transported (e.g. when using HTTP-headers most HTTP servers will reject
requests with excessive HTTP header data).

Type: URI-reference

Description: A reference to a location where the event payload is stored. The location MAY not
be accessible without further information (e.g. a pre-shared secret).

Known as the "Claim Check Pattern", this attribute MAY be used for a variety of purposes,
including:

If the Data is too large to be included in the message, the data is not present, and the
consumer can retrieve it using this attribute.

If the consumer wants to verify that the Data has not been tampered with, it can retrieve
it from a trusted source using this attribute.

3.4.6.1 CloudEvents-NL§

3.4.7 dataref§

If the Data MUST only be viewed by trusted consumers (e.g. personally identifiable
information), only a trusted consumer can retrieve it using this attribute and a pre-shared
secret.

If this attribute is used, the information SHOULD be accessible long enough for all consumers
to retrieve it, but MAY not be stored for an extended period of time.

Constraints:

OPTIONAL

The following example shows a CloudEvent in which the event producer has included both data
and dataref (serialized as JSON):

{

 "specversion" : "1.0",

 "type" : "com.github.pull_request.opened",

 "source" : "https://github.com/cloudevents/spec/pull/123",

 "id" : "A234-1234-1234",

 "datacontenttype" : "text/xml",

 "data" : "<much wow=\"xml\"/>",

 "dataref" : "https://github.com/cloudevents/spec/pull/123/events/A234

}

MAY be used to reference an external data location (for example: a link back to the producer
of the event that can be queried for more information about the event).

MAY be used to implenment 'informatiearm notificeren' where the consumer of the event
receives some minimal information on the nature of the event, but then has to issue a request
back to the producer to obtain additional information (the time aspect may deserve attention
because changes may occur in the period that consumers are notified and the time of
requesting additional information).

3.4.7.1 Example§

3.4.7.2 CloudEvents-NL§

This extension defines two attributes that can be included within a CloudEvent to describe the
position of an event in the ordered sequence of events produced by a unique event source. The
sequence attribute represents the value of this event's order in the stream of events. The exact
value and meaning of this attribute is defined by the sequencetype attribute. If the
sequencetype is missing, or not defined in this specification, event consumers will need to have
some out-of-band communication with the event producer to understand how to interpret the value
of the attribute.

Type: String

Description: Value expressing the relative order of the event. This enables interpretation of
data supercedence.

Constraints

REQUIRED

MUST be a non-empty lexicographically-orderable string

RECOMMENDED as monotonically increasing and contiguous

Type: String

Description: Specifies the semantics of the sequence attribute. See the SequenceType Values
section for more information.

Constraints:

OPTIONAL

If present, MUST be a non-empty string

3.5 Sequence§

3.5.1 Attributes§

3.5.1.1 sequence§

3.5.1.2 sequencetype§

This specification defines the following values for sequencetype. Additional values MAY be
defined by other specifications.

If the sequencetype is set to Integer, the sequence attribute has the following semantics:

The values of sequence are string-encoded signed 32-bit Integers.

The sequence MUST start with a value of 1 and increase by 1 for each subsequent value (i.e.
be contiguous and monotonically increasing).

The sequence wraps around from 2,147,483,647 (2^31 -1) to -2,147,483,648 (-2^31).

Attribute 'sequence' can be helpful in situations where:

a form of 'pull mechanism' is used ((e.g. periodically fetching events by consumers via HTTP
request)) or

where there is a need for (re)synchronization (e.g. after errors have occurred).

As defined by the term Data, CloudEvents MAY include domain-specific information about the
occurrence. When present, this information will be encapsulated within data.

Description: The event payload. This specification does not place any restriction on the type
of this information. It is encoded into a media format which is specified by the
datacontenttype attribute (e.g. application/json), and adheres to the dataschema format
when those respective attributes are present.

Constraints:

OPTIONAL

3.5.1.2.1 SequenceType Values§

3.5.1.2.2 Integer§

3.5.1.3 CloudEvents-NL§

4. Event Data§

In many scenarios, CloudEvents will be forwarded through one or more generic intermediaries,
each of which might impose limits on the size of forwarded events. CloudEvents might also be
routed to consumers, like embedded devices, that are storage or memory-constrained and therefore
would struggle with large singular events.

The "size" of an event is its wire-size and includes every bit that is transmitted on the wire for the
event: protocol frame-metadata, event metadata, and event data, based on the chosen event format
and the chosen protocol binding.

If an application configuration requires for events to be routed across different protocols or for
events to be re-encoded, the least efficient protocol and encoding used by the application SHOULD
be considered for compliance with these size constraints:

Intermediaries MUST forward events of a size of 64 KByte or less.

Consumers SHOULD accept events of a size of at least 64 KByte.

In effect, these rules will allow producers to publish events up to 64KB in size safely. Safely here
means that it is generally reasonable to expect the event to be accepted and retransmitted by all
intermediaries. It is in any particular consumer's control, whether it wants to accept or reject events
of that size due to local considerations.

Generally, CloudEvents publishers SHOULD keep events compact by avoiding embedding large
data items into event payloads and rather use the event payload to link to such data items. From an
access control perspective, this approach also allows for a broader distribution of events, because
accessing event-related details through resolving links allows for differentiated access control and
selective disclosure, rather than having sensitive details embedded in the event directly.

Interoperability is the primary driver behind this specification, enabling such behavior requires
some information to be made available in the clear resulting in the potential for information
leakage.

Consider the following to prevent inadvertent leakage especially when leveraging 3rd party
platforms and communication networks:

Context Attributes

5. Size Limits§

6. Advanced CloudEvents Security Options§

Sensitive information SHOULD NOT be carried or represented in context attributes.

CloudEvent producers, consumers, and intermediaries MAY introspect and log context
attributes.

Data

Domain specific event data SHOULD be encrypted to restrict visibility to trusted parties. The
mechanism employed for such encryption is an agreement between producers and consumers
and thus outside the scope of this specification.

Protocol Bindings

Protocol level security SHOULD be employed to ensure the trusted and secure exchange of
CloudEvents.

The following example shows a CloudEvent serialized as JSON:

{

 "specversion" : "1.0",

 "type" : "com.github.pull_request.opened",

 "source" : "https://github.com/cloudevents/spec/pull",

 "subject" : "123",

 "id" : "A234-1234-1234",

 "time" : "2018-04-05T17:31:00Z",

 "comexampleextension1" : "value",

 "comexampleothervalue" : 5,

 "datacontenttype" : "text/xml",

 "data" : "<much wow=\"xml\"/>"

}

CloudEvents-NL

In the example below, a number of agreements are visible as they apply within the CloudEvents-
NL profile. In order to show as much things as possible, this is done in the form of a very extensive
message. In minimal form, a message contains only four mandatory attributes: id, source,
specversion and type. For more information about a particular attribute, see the detailed
attribute description.

{

 "specversion": "1.0",

 "type": "nl.overheid.zaken.zaakstatus-gewijzigd",

7. Example§

 "source": "urn:nld:oin:00000001823288444000:systeem:BRP-component",

 "subject": "999990342",

 "id": "f3dce042-cd6e-4977-844d-05be8dce7cea",

 "time": "2021-12-10T17:31:00Z",

 "nlbrpnationaliteit": "0083",

 "geheimnummer": null,

 "dataref": "https://gemeenteX/api/persoon/999990342",

 "sequence": "1234",

 "sequencetype": "integer",

 "datacontenttype": "application/json",

 "data": {

 "bsn": "999990342",

 "naam": "Jan Jansen",

 "gecontroleerd": "ja"

 }

}

Attribute Explanation

specversion Always '1.0'

type Reverse DNS notation

source Urn notation with 'nld' namespace identifier

subject BSN as example; yet to be seen if and how attribute 'subject' will be used

id Uuid (unique)

time Time when event was recorded

nlbrpnationaliteit Extension attribute with a BRP-domain specific meaning

geheimnummer Extension attribute, to be treated as the equivalent of unset or omitted

dataref Extension attribute with a reference to where to get additional information

sequence Extension attribute with an event tracking number

sequencetype Extension attribut with indication of the type of sequence used

datacontenttype Indication of content type in attribute 'data'

data Content information for consumer ('payload')

Attribute names meet the CloudEvents specification requirements:

MUST consist of lower-case letters ('a' to 'z') or digits ('0' to '9') from the ASCII character set.

SHOULD be descriptive and terse and SHOULD NOT exceed 20 characters in length.

This appendix describes how the CloudEvent-NL profile can be applied when using the JSON
format, the HTTP protocol and the Webhook pattern.

The CloudEvent-NL message format can be used when using different formats and protocols.
CloudEvents has a layered architecture for this. In order to be able to use the GOV-NL profile
properly in practice, agreements must also be made when a certain format and/or protocol is used.

In addition to the CloudEvent specification the Serverless Working Group has described for several
commonly used formats and protocols how they can be used in a standardized way in combination
with the CloudEvents message format.

Within the Dutch government, frequent use is made of the JSON format, the HTTP protocol and
the Webhook pattern for data exchange. For example, a common way to send events to consumers
is to use the webhook pattern where a message in JSON format is sent via the HTTP protocol.
Further standardization than just event description via the NL GOV profile therefore benefits most
from agreements around these 3 areas. In addition to standardization through the use of the NL
GOV profile, we therefore work towards standardization on exchanging event information when
using JSON, HTTP and Webhook.

The NL GOV profile is intended to be used as a government-wide standard. This does not yet apply
to the additional specification for the use of JSON, HTTP and Webhook. The specifications for
them have the character of 'guidelines' ("a statement by which to determine a course of action",
Wikipedia).

Similar to what happened in the NL GOV profile for the CloudEvents specification, the guidelines
make recommendations about the use of the specifications within the context of the Dutch
government. These are intended to make use of the specifications more unambiguous and to work
towards standardisation in the long term.

For the time being, the following constraints apply:

One SHOULD use the JSON Event Format for CloudEvents specification and pay attention to
the points of attention and recommendations in the guideline NL GOV Guideline for
CloudEvents JSON.

One SHOULD use the HTTP Protocol Binding for CloudEvents specification and pay
attention to the points of attention and recommendations in the guideline NL GOV Guideline
for CloudEvents HTTP.

One SHOULD use the HTTP 1.1 Web Hooks for Event Delivery specification and pay
attention to the points of attention and recommendations in the guideline NL GOV Guideline

A. Use of JSON, HTTP and Webhook§

https://github.com/cloudevents/spec/blob/v1.0.1/primer.md#architecture
https://github.com/cncf/wg-serverless
https://github.com/cloudevents/spec#cloudevents-documents
https://github.com/cloudevents/spec#cloudevents-documents
https://en.wikipedia.org/wiki/Guideline
https://github.com/cloudevents/spec/blob/v1.0.1/json-format.md
https://gitdocumentatie.logius.nl/publicatie/notificatieservices/guidelines/#guideline-for-the-use-of-the-json-event-format-for-cloudevents
https://gitdocumentatie.logius.nl/publicatie/notificatieservices/guidelines/#guideline-for-the-use-of-the-json-event-format-for-cloudevents
https://github.com/cloudevents/spec/blob/v1.0.1/http-protocol-binding.md
https://gitdocumentatie.logius.nl/publicatie/notificatieservices/guidelines/#guideline-for-the-use-of-the-http-protocol-binding-for-cloudevents
https://gitdocumentatie.logius.nl/publicatie/notificatieservices/guidelines/#guideline-for-the-use-of-the-http-protocol-binding-for-cloudevents
https://github.com/cloudevents/spec/blob/v1.0.1/http-webhook.md
https://gitdocumentatie.logius.nl/publicatie/notificatieservices/guidelines/#guideline-for-the-use-of-the-webhook-pattern-for-cloudevents

for CloudEvents Webhook.

Figure 1 Publish-subscribe pattern

[ADR]
API Design Rules. Jasper Roes; Joost Farla. Logius. URL:
https://gitdocumentatie.logius.nl/publicatie/api/adr/2.1

[CloudEvents]
CloudEvents - Version 1.0.1. CNCF Serverless Working Group. May 2011. URL:
https://github.com/cloudevents/spec/blob/v1.0.1/spec.md

[RFC2119]
Key words for use in RFCs to Indicate Requirement Levels. S. Bradner. IETF. March 1997.
Best Current Practice. URL: https://www.rfc-editor.org/rfc/rfc2119

[RFC8174]
Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words. B. Leiba. IETF. May 2017.
Best Current Practice. URL: https://www.rfc-editor.org/rfc/rfc8174

↑

B. List of Figures§

C. References§

C.1 Normative references§

https://gitdocumentatie.logius.nl/publicatie/notificatieservices/guidelines/#guideline-for-the-use-of-the-webhook-pattern-for-cloudevents
https://gitdocumentatie.logius.nl/publicatie/api/adr/2.1
https://gitdocumentatie.logius.nl/publicatie/api/adr/2.1
https://github.com/cloudevents/spec/blob/v1.0.1/spec.md
https://github.com/cloudevents/spec/blob/v1.0.1/spec.md
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc8174
https://www.rfc-editor.org/rfc/rfc8174

