
NLGov REST API Design Rules
Logius Standard
Draft September 02, 2025

This version:
https://logius-standaarden.github.io/API-Design-Rules/

Latest published version:
https://gitdocumentatie.logius.nl/publicatie/api/adr/

Latest editor's draft:
https://logius-standaarden.github.io/API-Design-Rules/

Previous version:
https://gitdocumentatie.logius.nl/publicatie/api/adr/2.0.2/

Editors:
Frank Terpstra (Geonovum)
Jan van Gelder (Geonovum)
Alexander Green (Logius)
Martin van der Plas (Logius)
Tim van der Lippe (Logius)

Authors:
Jasper Roes (Het Kadaster)
Joost Farla (Het Kadaster)

Participate:
GitHub Logius-standaarden/API-Design-Rules
File an issue
Commit history
Pull requests

This document is also available in these non-normative format: pdf

This document is licensed under
Creative Commons Attribution 4.0 International Public License

Abstract

This document contains a normative standard for designing APIs in the Dutch Public Sector. The
Governance of this standard is described by the API-Standaarden beheermodel published by
Logius. This document is part of the Nederlandse API Strategie, which consists of a set of
documents.

Lo
gi

us
 S

ta
nd

ar
d

- D
ra

ft

https://www.logius.nl/onze-dienstverlening/standaarden
https://logius-standaarden.github.io/API-Design-Rules/
https://gitdocumentatie.logius.nl/publicatie/api/adr/
https://logius-standaarden.github.io/API-Design-Rules/
https://gitdocumentatie.logius.nl/publicatie/api/adr/2.0.2/
https://www.geonovum.nl/
https://www.geonovum.nl/
https://www.logius.nl/
https://www.logius.nl/
https://www.logius.nl/
https://www.kadaster.nl/
https://www.kadaster.nl/
https://github.com/Logius-standaarden/API-Design-Rules/
https://github.com/Logius-standaarden/API-Design-Rules/issues/
https://github.com/Logius-standaarden/API-Design-Rules/commits/
https://github.com/Logius-standaarden/API-Design-Rules/pulls/
http://localhost:8080/api-adr-2.1.0.pdf
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://gitdocumentatie.logius.nl/publicatie/api/beheermodel/
https://www.geonovum.nl/themas/kennisplatform-apis#APIStrategie
https://www.geonovum.nl/themas/kennisplatform-apis#APIStrategie

1.
1.1
1.2
1.3
1.4
1.5

2.
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.9.1

As well as sections marked as non-normative, all authoring guidelines, diagrams, examples, and
notes in this specification are non-normative. Everything else in this specification is normative.

The key words MAY, MUST, MUST NOT, NOT RECOMMENDED, SHOULD, and SHOULD NOT
in this document are to be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and
only when, they appear in all capitals, as shown here.

Status of This Document

This is a draft that could be altered, removed or replaced by other documents. It is not a
recommendation approved by TO.

Table of Contents

Abstract

Status of This Document

Introduction
Goal
Status
Authors
Reading Guide
Extensions

The core set of Design Rules
Summary
Resources
HTTP methods
Statelessness
Relationships
Operations
Documentation
Versioning
Transport Security

HTTP-level Security

Conformance§

https://www.rfc-editor.org/info/bcp14

2.9.2

2.9.3

2.10

3.

A.

B.
B.1
B.2

Browser-based applications

Validate content types

Geospatial

Glossary

Spectral linter configuration

References
Normative references
Informative references

Date Version Changes summary

2020-07-09 1.0 Initial version based on input from Kennisplatform API's

2024-03-07 2.0.0 Add Geospatial and Transport Security modules

2025-08-27 2.1.0 Add info.contact rule and linter configuration

This section is non-normative.

More and more governmental organizations offer REST APIs (henceforth abbreviated as APIs), in
addition to existing interfaces like SOAP and WFS. These APIs aim to be developer-friendly and
easy to implement. While this is a commendable aim, it does not shield a developer from a steep
learning curve getting to know every new API, in particular when every individual API is designed
using different patterns and conventions.

This document aims to describe a widely applicable set of design rules for the unambiguous
provisioning of REST APIs. The primary goal is to offer guidance for organizations designing new
APIs, with the purpose of increasing developer experience (DX) and interoperability between
APIs. Hopefully, many organizations will adopt these design rules in their corporate API strategies
and provide feedback about exceptions and additions to subsequently improve these design rules.

1. Introduction§

1.1 Goal§

https://gitdocumentatie.logius.nl/publicatie/api/adr/1.0
https://gitdocumentatie.logius.nl/publicatie/api/adr/2.0.0
https://gitdocumentatie.logius.nl/publicatie/api/adr/2.1.0

This version of the design rules has been submitted to Forum Standaardisatie for inclusion on the
Comply or Explain list of mandatory standards in the Dutch Public Sector. This document
originates from the document API Strategie voor de Nederlandse Overheid, which was recently
split into separate sub-documents.

Despite the fact that two authors are mentioned in the list of authors, this document is the result of
a collaborative effort by the members of the API Design Rules Working Group.

This document is part of the Nederlandse API Strategie.

The Nederlandse API Strategie consists of a set of distinct documents.

Status Description & Link

Informative Inleiding NL API Strategie

Informative Architectuur NL API Strategie

Informative Gebruikerswensen NL API Strategie

Normative API Design Rules (ADR v2.0)

Normative Open API Specification (OAS 3.0)

Normative NL GOV OAuth profiel

Normative Digikoppeling REST API koppelvlak specificatie

Normative module GEO module v1.0

Normative module Transport Security module v1.0

Before reading this document it is advised to gain knowledge of the informative documents, in
particular the Architecture.

An overview of all current documents is available in this Dutch infographic:

1.2 Status§

1.3 Authors§

1.4 Reading Guide§

https://docs.geostandaarden.nl/api/vv-hr-API-Strategie-20190715/
https://www.geonovum.nl/themas/kennisplatform-apis#APIStrategie
https://geonovum.github.io/KP-APIs/API-strategie-algemeen/Inleiding/
https://geonovum.github.io/KP-APIs/API-strategie-algemeen/Architectuur/
https://geonovum.github.io/KP-APIs/API-strategie-algemeen/Gebruikerswensen/
https://gitdocumentatie.logius.nl/publicatie/api/adr/2.0/
https://spec.openapis.org/oas/v3.0.1.html
https://gitdocumentatie.logius.nl/publicatie/api/oauth/
https://gitdocumentatie.logius.nl/publicatie/dk/restapi/
https://gitdocumentatie.logius.nl/publicatie/api/mod-geo/1.0.2/
https://gitdocumentatie.logius.nl/publicatie/api/mod-ts/1.0.2/
https://geonovum.github.io/KP-APIs/API-strategie-algemeen/Architectuur/

Legenda

Verplichte
'Pas toe of leg uit'
-lijst standaarden

A
lg

em
en

e
do

cu
m

en
te

n

Inleiding
NL API Strategie

Gebruikerswensen
NL API Strategie

Architectuur
NL API Strategie

N
or

m
at

ie
ve

 d
oc

um
en

te
n

API Design Rules (ADR)

Open API Specification (OAS)

NL GOV OAuth profiel

Digikoppeling REST API koppelvlak
specificatie

NL GOV OIDC profiel

Geospatial module

Signing module

Encryption module

NL API Strategie
M

od
ul

en
 d

oc
um

en
te

n

Notificeren (Cloudevents)

Versioning moduleAPI Access module

Naming conventions module

JSON module

Filtering & Sorting module

Search & Customization module

Temporal module

Hypermedia module

Pagination module

Caching module

Rate limiting module

Error handling module

Delegation module

API Monitoring module

Discovery module

Logging module

Batching module

Vastgestelde algemene
documenten

Concept modules

Stabiele modules

Laatst bijgewerkt:

dd. 20-05-2025
Versie 1.3.0

Infographic
NL API Strategie

Nog te ontwikkelen
modules

Developer Overheid

Figure 1 NL API Strategie Infographic

NOTE
In addition to this (normative) document, separate modules are being written to provide a set of
extensions. These modules are all separate documents and exists in a latest editor's draft
(Werkversie in Dutch). The latest editor's draft is actively being worked on and can be found on
GitHub. It contains the most recent changes.

1.5 Extensions§

https://docs.geostandaarden.nl/api/API-Strategie/
https://docs.geostandaarden.nl/api/API-Strategie-gebruikerswensen/
https://docs.geostandaarden.nl/api/API-Strategie-architectuur/
https://gitdocumentatie.logius.nl/publicatie/api/adr/
https://forumstandaardisatie.nl/open-standaarden/openapi-specification
https://gitdocumentatie.logius.nl/publicatie/api/oauth/
https://gitdocumentatie.logius.nl/publicatie/dk/restapi/
https://gitdocumentatie.logius.nl/publicatie/api/oidc/
https://gitdocumentatie.logius.nl/publicatie/api/mod-geo/
https://geonovum.github.io/KP-APIs/API-strategie-modules/signing-jades/
https://geonovum.github.io/KP-APIs/API-strategie-modules/encryption/
https://apigov.nl/
https://gitdocumentatie.logius.nl/publicatie/notificatieservices/cloudevents-nl/
https://docs.geostandaarden.nl/api/API-Strategie-mod-access-control/
https://docs.geostandaarden.nl/api/API-Strategie-mod-naming-conventions/
https://docs.geostandaarden.nl/api/API-Strategie-mod-hypermedia/
https://logius-standaarden.github.io/logboek-dataverwerkingen/
https://geonovum.github.io/KP-APIs/API-strategie-modules/batching/
https://apigov.nl/
https://developer.overheid.nl/
https://developer.overheid.nl/
https://developer.overheid.nl/
https://developer.overheid.nl/
https://apigov.nl/
https://geonovum.github.io/KP-APIs/
https://github.com/Geonovum/KP-APIs

Design rules are technical rules, which should be tested automatically, and functional rules, which
should be considered when designing and building the API.

List of technical rules

/core/no-trailing-slash: Leave off trailing slashes from URIs

/core/path-segments-kebab-case: Use kebab-case in path segments

/core/query-keys-camel-case: Use camelCase in query keys

/core/http-methods: Only apply standard HTTP methods

/core/doc-openapi: Use OpenAPI Specification for documentation

/core/doc-openapi-contact: Document contact information for publicly available APIs

/core/publish-openapi: Publish OAS document at a standard location in JSON-format

/core/uri-version: Include the major version number in the URI

/core/semver: Adhere to the Semantic Versioning model when releasing API changes

/core/version-header: Return the full version number in a response header

/core/transport/tls: Secure connections using TLS

/core/transport/security-headers: Use mandatory security headers in all API responses

/core/transport/cors: Use CORS to control access

List of functional rules

/core/naming-resources: Use nouns to name resources

/core/naming-collections: Use plural nouns to name collection resources

/core/interface-language: Define interfaces in Dutch unless there is an official English
glossary available

/core/hide-implementation: Hide irrelevant implementation details

/core/http-safety: Adhere to HTTP safety and idempotency semantics for operations

/core/http-response-code: Adhere to HTTP status codes to convey appropriate errors

2. The core set of Design Rules§

2.1 Summary§

Functional

/core/stateless: Do not maintain session state on the server

/core/nested-child: Use nested URIs for child resources

/core/resource-operations: Model resource operations as a sub-resource or dedicated resource

/core/doc-language: Publish documentation in Dutch unless there is existing documentation in
English

/core/deprecation-schedule: Include a deprecation schedule when deprecating features or
versions

/core/transition-period: Schedule a fixed transition period for a new major API version

/core/changelog: Publish a changelog for API changes between versions

/core/transport/no-sensitive-uris: No sensitive information in URIs

/core/geospatial: Apply the geospatial module for geospatial data

The REST architectural style is centered around the concept of a resource. A resource is an
abstraction of a conceptual entity, identified by a globally unique URI. It may correspond to
anything from a physical object (e.g. a building or a person) to an abstract concept (e.g. a permit,
an event or today's weather). Although a resource is not tied to any specific exchange format, its
current state can be transferred to clients through one or more representations, such as JSON or
XML.

/core/naming-resources: Use nouns to name resources

Statement
Resources are referred to using nouns (instead of verbs) that represent entities
meaningful to the API consumer.

A few correct examples of nouns as part of a URI:

Gebouw

Vergunning

This is different than RPC-style APIs, where verbs are often used to perform
certain actions:

Opvragen

Registreren

2.2 Resources§

Functional

Rationale
Resources describe objects, not actions.

A resource that corresponds to a single conceptual entity is referred to as a singular resource.
Resources can also be logically grouped into collections, which are themselves resources and
typically support operations like paging, sorting, and filtering. While collection members are often
of the same type, this is not strictly required. A collection resource contains references (URIs) to
the individual singular resources it includes.

/core/naming-collections: Use plural nouns to name collection resources

Statement
Collection resources are referred to using plural nouns.

Rationale
The path segment describing the name of the collection resource MUST be written
in the plural form.

Example collection resources, describing a list of things:

https://api.example.org/v1/gebouwen

https://api.example.org/v1/vergunningen

Singular resources contained within a collection resource are generally named by
appending a path segment for the identification of each individual resource.

Example singular resource, contained within a collection resource:

https://api.example.org/v1/gebouwen/3b9710c4-6614-467a-ab82

https://api.example.org/v1/vergunningen/d285e05c-6b01-45c3-

Singular resources that stand on their own, i.e. which are not contained within a
collection resource, MUST be named with a path segment that is written in the
singular form.

Functional

Technical

Example singular resource describing the profile of the currently authenticated
user:

https://api.example.org/v1/gebruikersprofiel

/core/interface-language: Define interfaces in Dutch unless there is an
official English glossary available

Statement
Resources and the underlying attributes SHOULD be defined in the Dutch
language unless there is an official English glossary available.

Rationale
If your API references terms used in law or official government communication for
example, then these terms have a well-defined meaning. The exact meaning of
concepts is often lost in translation, hence such terms SHOULD be defined in the
Dutch language.

Publishing an API for an international (e.g. European) audience might be a reason
to define interfaces in English instead.

Note that glossaries exist that define useful sets of attributes which SHOULD
preferably be reused. Examples can be found at schema.org.

/core/no-trailing-slash: Leave off trailing slashes from URIs

Statement
A URI MUST never contain a trailing slash. When requesting a resource including
a trailing slash, this MUST result in a 404 (not found) error response and not a
redirect. This forces API consumers to use the correct URI.

NOTE
This rule does not apply to the root resource (append / to the service root
URL).

Rationale
Leaving off trailing slashes, and not implementing a redirect, forces API
consumers to use the correct URI. This avoids confusion and ambiguity.

http://schema.org/docs/schemas.html

Technical

URI without a trailing slash (correct):

https://api.example.org/v1/gebouwen

URI with a trailing slash (incorrect):

https://api.example.org/v1/gebouwen/

URI for the root resource is exempt (correct):

https://api.example.org/v1/

How to test
Analyse all resource paths (except the root resource path) in the OpenAPI
Description to confirm no resource paths end with a forward slash (/). This rule
can be automatically checked and an example test is shown in the linter
configuration.

/core/path-segments-kebab-case: Use kebab-case in path segments

Statement

Path segments of a URI MUST only contain lowercase letters, digits or hyphens.
This is also known as kebab-case. Hyphens MUST only be used to deliniate
distinct words. This also implies that diacritics MUST be normalized and special
characters MUST be omitted.

Another implication of this rule is that file extensions MUST NOT be used.
Resources SHOULD use the Accept header for content negotation.

The last path segment MAY start with _, which is used as a convention to
implement operations

Rationale
Some web servers and frameworks do not handle case sensitivity or special
characters of URIs well. The use of kebab-case path segments ensures
compatibility with a broad range of systems. It is a more common implementation
choice for path segments than camelCase or snake_case. Information (such as
names of objects) that requires special characters can be part of the request body
instead of being in the URI.

https://developer.mozilla.org/en-US/docs/Glossary/Kebab_case

URI path segment using kebab-case (correct):

https://api.example.org/v1/financiele-claims

URI path segment not using hyphens to delineate words (incorrect):

https://api.example.org/v1/financiele_claims

URI path segment not lowercase characters (incorrect):

https://api.example.org/v1/financieleClaims

URI path segment ending with a hyphen (incorrect):

https://api.example.org/v1/organisatie-

URI path segment starting with a hyphen (incorrect):

https://api.example.org/v1/-organisatie

URI path segment using normalized diacritics (correct):

https://api.example.org/v1/scenes

URI path segment using diacritics (incorrect):

https://api.example.org/v1/scènes

URI path segment omitting special characters (correct):

https://api.example.org/v1/schemas

URI path segment using special characters (incorrect):

https://api.example.org/v1/schema's

URI path segment using file extensions (incorrect):

https://api.example.org/v1/schema.txt

Last URI path segment starting with _ (correct):

https://api.example.org/v1/organisaties/_zoek

How to test
Loop all resource paths in the OpenAPI Description and check that all resource
path segments use lowercase letters, digits or hyphens (-). The last path segment is

Technical

allowed to start with a _. You can use the following regex for each resource path:

^(\/|(\/_[a-z0-9]+|\/(([a-z0-9\-]+|{[^}]+})(\/([a-z0-9\-\.

This rule can be automatically checked and an example test is shown in the linter
configuration.

/core/query-keys-camel-case: Use camelCase in query keys

Statement

Query keys in a URI MUST only contain letters and digits, where the first letter of
each word is capitalized, except for the first letter of the entire compound word.
This is also known as lower camelCase. This also implies that diacritics MUST be
normalized and special characters MUST be omitted.

Rationale
Query keys are often converted to JSON object keys, where camelCase is the
naming convention to avoid compatibility issues with JavaScript when
deserializing objects.

URI query key using camelCase (correct):

https://api.example.org/v1/gebouwen?typeGebouw=woning

URI query key not using camelCase (incorrect):

https://api.example.org/v1/gebouwen?type-gebouw=woning

How to test
Loop all resource paths in the OpenAPI Description and check that all query keys
use letters, digits in camelCase. You can use the following regex for each query
key:

^[a-z0-9]+[a-zA-Z0-9]*$

https://developer.mozilla.org/en-US/docs/Glossary/Camel_case

Functional

Technical

/core/hide-implementation: Hide irrelevant implementation details

Statement
An API SHOULD NOT expose implementation details of the underlying
application, development platforms/frameworks or database systems/persistence
models.

Rationale
The primary motivation behind this design rule is that an API design MUST
focus on usability for the client, regardless of the implementation details
under the hood.

The API, application and infrastructure need to be able to evolve
independently to ease the task of maintaining backwards compatibility for
APIs during an agile development process.

The API design of Convenience,- and Process API types (as described in
Aanbeveling 2 of the NL API Strategie) SHOULD NOT be a 1-on-1 mapping
of the underlying domain- or persistence model.

The API design of a System API type (as described in Aanbeveling 2 of the
NL API Strategie) MAY be a mapping of the underlying persistence model.

The API SHOULD NOT expose information about the technical components
being used, such as development platforms/frameworks or database systems.

The API SHOULD offer client-friendly attribute names and values, while
persisted data may contain abbreviated terms or serializations which might be
cumbersome for consumption.

Although the REST architectural style does not impose a specific protocol, REST APIs are
typically implemented using HTTP [rfc9110].

/core/http-methods: Only apply standard HTTP methods

Statement
Resources MUST be retrieved or manipulated using standard HTTP methods
(GET/POST/PUT/PATCH/DELETE).

2.3 HTTP methods§

https://docs.geostandaarden.nl/api/def-hr-API-Strategie-20200204/#aanbeveling-2-analyseer-welke-api-s-je-aan-moet-bieden-welke-informatievragen-wil-je-beantwoorden
https://docs.geostandaarden.nl/api/def-hr-API-Strategie-20200204/#aanbeveling-2-analyseer-welke-api-s-je-aan-moet-bieden-welke-informatievragen-wil-je-beantwoorden

Rationale
The HTTP specifications offer a set of standard methods, where every method is
designed with explicit semantics. Adhering to the HTTP specification is crucial,
since HTTP clients and middleware applications rely on standardized
characteristics.

Method Operation Description

GET Read
Retrieve a resource representation for the given
URI. Data is only retrieved and never modified.

POST Create

Create a subresource as part of a collection
resource. This operation is not relevant for singular
resources. This method can also be used for
exceptional cases.

PUT Create/update
Create a resource with the given URI or replace
(full update) a resource when the resource already
exists.

PATCH Update
Partially updates an existing resource. The request
only contains the resource modifications instead of
the full resource representation.

DELETE Delete Remove a resource with the given URI.

The following table shows some examples of the use of standard HTTP
methods:

Request Description

GET /rijksmonumenten Retrieves a list of national monuments.

GET /rijksmonumenten/12
Retrieves an individual national
monument.

POST /rijksmonumenten Creates a new national monument.

PUT /rijksmonumenten/12
Modifies national monument #12
completely.

PATCH

/rijksmonumenten/12

Modifies national monument #12
partially.

DELETE

/rijksmonumenten/12
Deletes national monument #12.

Functional

NOTE

The HTTP specification [rfc9110] offers a set of standard methods, where
every method is designed with explicit semantics. HTTP also defines other
methods, e.g. HEAD, OPTIONS, TRACE, and CONNECT.
The OpenAPI Specification 3.0 Path Item Object also supports these methods,
except for CONNECT.
According to RFC 9110 9.1 the GET and HEAD HTTP methods MUST be
supported by the server, all other methods are optional.
In addition to the standard HTTP methods, a server may support other optional
methods as well, e.g. PROPFIND, COPY, PURGE, VIEW, LINK, UNLINK, LOCK,
UNLOCK, etc.
If an optional HTTP request method is sent to a server and the server does not
support that HTTP method for the target resource, an HTTP status code 405
Method Not Allowed shall be returned and a list of allowed methods for the
target resource shall be provided in the Allow header in the response as stated
in RFC 9110 15.5.6.

How to test
Analyse the OpenAPI Description to confirm all supported methods are either
post, put, get, delete, or patch. This rule can be automatically checked and
an example test is shown in the linter configuration.

/core/http-safety: Adhere to HTTP safety and idempotency semantics for
operations

Statement
The following table describes which HTTP methods MUST behave as safe and/or
idempotent:

Method Safe Idempotent

GET Yes Yes

HEAD Yes Yes

OPTIONS Yes Yes

POST No No

PUT No Yes

PATCH No No

DELETE No Yes

https://spec.openapis.org/oas/v3.0.1#path-item-object
https://www.rfc-editor.org/rfc/rfc9110#name-overview
https://www.rfc-editor.org/rfc/rfc9110#name-405-method-not-allowed

Functional

Rationale
The HTTP protocol [rfc9110] specifies whether an HTTP method SHOULD be
considered safe and/or idempotent. These characteristics are important for clients
and middleware applications, because they SHOULD be taken into account when
implementing caching and fault tolerance strategies.

Request methods are considered safe if their defined semantics are essentially
read-only; i.e., the client does not request, and does not expect, any state change on
the origin server as a result of applying a safe method to a target resource. A
request method is considered idempotent if the intended effect on the server of
multiple identical requests with that method is the same as the effect for a single
such request.

/core/http-response-code: Adhere to HTTP status codes to convey
appropriate errors

Statement
Always use the semantically appropriate HTTP status code ([rfc9110]) for the
response.

Rationale
The server SHOULD NOT only use 200 for success and 404 for error states. Use
the semantically appropriate status code for success or failure.

In case of an error, the server SHOULD NOT pass technical details (e.g. call stacks
or other internal hints) to the client. The error message SHOULD be generic to
avoid revealing additional details and expose internal information which can be
used with malicious intent.

One of the key constraints of the REST architectural style is stateless communication between
client and server. It means that every request from client to server must contain all of the
information necessary to understand the request. The server cannot take advantage of any stored
session context on the server as it didn’t memorize previous requests. Session state must therefore
reside entirely on the client.

To properly understand this constraint, it is important to make a distinction between two different
kinds of state:

2.4 Statelessness§

https://www.rfc-editor.org/rfc/rfc9110#name-status-codes

Functional

Session state: information about the interactions of an end user with a particular client
application within the same user session, such as the last page being viewed, the login state or
form data in a multi-step registration process. Session state must reside entirely on the client
(e.g. in the user's browser).

Resource state: information that is permanently stored on the server beyond the scope of a
single user session, such as the user's profile, a product purchase or information about a
building. Resource state is persisted on the server and must be exchanged between client and
server (in both directions) using representations as part of the request or response payload.
This is actually where the term REpresentational State Transfer (REST) originates from.

NOTE

It is a misconception that there should be no state at all. The stateless communication constraint
should be seen from the server's point of view and states that the server should not be aware of
any session state.

Stateless communication offers many advantages, including:

Simplicity is increased because the server does not have to memorize or retrieve session state
while processing requests

Scalability is improved because not having to incorporate session state across multiple
requests enables higher concurrency and performance

Observability is improved since every request can be monitored or analyzed in isolation
without having to incorporate session context from other requests

Reliability is improved because it eases the task of recovering from partial failures since the
server does not have to maintain, update or communicate session state. One failing request
does not influence other requests (depending on the nature of the failure of course).

/core/stateless: Do not maintain session state on the server

Statement
In the context of REST APIs, the server MUST NOT maintain or require any notion
of the functionality of the client application and the corresponding end user
interactions.

Rationale
To achieve full decoupling between client and server, and to benefit from the
advantages mentioned above, session state MUST NOT reside on the server.
Session state MUST therefore reside entirely on the client.

Functional

NOTE

The client of a REST API could be a variety of applications such as a browser
application, a mobile or desktop application and even another server serving as a
backend component for another client. REST APIs should therefore be completely
client-agnostic.

Resources are often interconnected by relationships. Relationships can be modelled in different
ways depending on the cardinality, semantics and more importantly, the use cases and access
patterns the REST API needs to support.

/core/nested-child: Use nested URIs for child resources

Statement
When having a child resource which can only exist in the context of a parent
resource, the URI SHOULD be nested.

Rationale
In this use case, the child resource does not necessarily have a top-level collection
resource. The best way to explain this design rule is by example.

2.5 Relationships§

When modelling resources for a news platform including the ability for users
to write comments, it might be a good strategy to model the collection
resources hierarchically:

https://api.example.org/v1/articles/123/comments

The platform might also offer a photo section, where the same commenting
functionality is offered. In the same way as for articles, the corresponding sub-
collection resource might be published at:

https://api.example.org/v1/photos/456/comments

These nested sub-collection resources can be used to post a new comment
(POST method) and to retrieve a list of comments (GET method) belonging to
the parent resource, i.e. the article or photo. An important consideration is that
these comments could never have existed without the existence of the parent
resource.

From the consumer's perspective, this approach makes logical sense, because
the most obvious use case is to show comments below the parent article or
photo (e.g. on the same web page) including the possibility to paginate through
the comments. The process of posting a comment is separate from the process
of publishing a new article. Another client use case might also be to show a
global latest comments section in the sidebar. For this use case, an additional
resource could be provided:

https://api.example.org/v1/comments

If this would have not been a meaningful use case, this resource should not
exist at all. Because it does not make sense to post a new comment from a
global context, this resource would be read-only (only GET method is
supported) and may possibly provide a more compact representation than the
parent-specific sub-collections.

The singular resources for comments, referenced from all 3 collections, could
still be modelled on a higher level to avoid deep nesting of URIs (which might
increase complexity or problems due to the URI length):

https://api.example.org/v1/comments/123

https://api.example.org/v1/comments/456

Although this approach might seem counterintuitive from a technical
perspective (we simply could have modelled a single /comments resource
with optional filters for article and photo) and might introduce partially

Functional

redundant functionality, it makes perfect sense from the perspective of the
consumer, which increases developer experience.

/core/resource-operations: Model resource operations as a sub-resource or
dedicated resource

Statement
Model resource operations as a sub-resource or dedicated resource.

Rationale
There are resource operations which might not seem to fit well in the CRUD
interaction model. For example, approving a submission or notifying a customer.
Depending on the type of the operation, there are three possible approaches:

1. Re-model the resource to incorporate extra fields supporting the particular
operation. For example, an approval operation can be modelled in a boolean
attribute goedgekeurd that can be modified by issuing a PATCH request
against the resource. A drawback of this approach is that the resource does not
contain any metadata about the operation (when and by whom was the
approval given? Was the submission rejected in an earlier stage?).
Furthermore, this requires a fine-grained authorization model, since approval
might require a specific role.

2. Treat the operation as a sub-resource. For example, model a sub-collection
resource /inzendingen/12/beoordelingen and add an approval or
rejection by issuing a POST request. To be able to retrieve the review history
(and to consistently adhere to the REST principles), also support the GET
method for this resource. The /inzendingen/12 resource might still
provide a goedgekeurd boolean attribute (same as approach 1) which gets
automatically updated in the background after adding a review. This attribute
SHOULD however be read-only.

3. In exceptional cases, the approaches above still do not offer an appropriate
solution. An example of such an operation is a global search across multiple
resources. In this case, the creation of a dedicated resource, possibly nested
under an existing resource, is the most obvious solution. Use the imperative
mood of a verb, maybe even prefix it with a underscore to distinguish these
resources from regular resources. For example: /search or /_search.

2.6 Operations§

Technical

Technical

Depending on the operation characteristics, GET and/or POST method MAY be
supported for such a resource.

An API is as good as the accompanying documentation. The documentation has to be easily
findable, searchable and publicly accessible. Most developers will first read the documentation
before they start implementing. Hiding the technical documentation in PDF documents and/or
behind a login creates a barrier for both developers and search engines.

/core/doc-openapi: Use OpenAPI Specification for documentation

Statement
API documentation MUST be provided in the form of an OpenAPI definition
document which conforms to the OpenAPI Specification (from v3 onwards).

Rationale
The OpenAPI Specification (OAS) [OPENAPIS] defines a standard, language-
agnostic interface to RESTful APIs which allows both humans and computers to
discover and understand the capabilities of the service without access to source
code, documentation, or through network traffic inspection. When properly
defined, a consumer can understand and interact with the remote service with a
minimal amount of implementation logic. API documentation MUST be provided
in the form of an OpenAPI definition document which conforms to the OpenAPI
Specification (from v3 onwards). As a result, a variety of tools can be used to
render the documentation (e.g. Swagger UI or ReDoc) or automate tasks such as
testing or code generation. The OAS document SHOULD provide clear
descriptions and examples.

How to test
Parse the resource at the provided location as an OpenAPI Description and confirm
all $refs are resolvable and paths are defined. This rule can be automatically
checked and an example test is shown in the linter configuration.

/core/doc-openapi-contact: Document contact information for publicly
available APIs

2.7 Documentation§

Functional

Statement
OpenAPI definition document SHOULD include the info.contact object for
publicly available APIs. Contact information SHOULD NOT be a generic contact
address for the whole organisation.

Rationale
The OpenAPI Specification (OAS) [OPENAPIS] can include contact information
to make clear how to reach out to API owners in case of issues or questions. This is
relevant for publicly available APIs (such as OData) where no pre-existing
communication channel exists between provider and consumer of the API. For
internal APIs (where communication channels such as chat or issue trackers are
likely already known), the info.contact MAY be provided.

Relevant contact information can include an email address and issue tracker.

{

 "name": "Gebouwen API beheerder",

 "url": "https://www.github.com/ministerie/gebouwen/issue

 "email": "teamgebouwen@ministerie.nl"

}

How to test
Parse the OpenAPI Description to confirm the info.contact object is present.
This rule can be automatically checked and an example test is shown in the linter
configuration.

/core/doc-language: Publish documentation in Dutch unless there is existing
documentation in English

Statement
You SHOULD write the OAS document in Dutch.

Rationale
In line with design rule /core/interface-language, the OAS document (e.g.
descriptions and examples) SHOULD be written in Dutch. If relevant, you MAY
refer to existing documentation written in English.

https://spec.openapis.org/oas/v3.0.1.html#contact-object

Technical
/core/publish-openapi: Publish OAS document at a standard location in
JSON-format

Statement
To make the OAS document easy to find and to facilitate self-discovering clients,
there SHOULD be one standard location where the OAS document is available for
download.

Rationale
It MUST be possible for clients (such as Swagger UI or ReDoc) to retrieve the
document without having to authenticate. Furthermore, the CORS policy for this
URI MUST allow external domains to read the documentation from a browser
environment.

The standard location for the OAS document is a URI called openapi.json or
openapi.yaml within the base path of the API. This can be convenient, because
OAS document updates can easily become part of the CI/CD process.

At least the JSON format MUST be supported. When having multiple (major)
versions of an API, every API version SHOULD provide its own OAS
document(s).

An API having base path https://api.example.org/v1 MUST publish the
OAS document at:

https://api.example.org/v1/openapi.json

Optionally, the same OAS document MAY be provided in YAML format:

https://api.example.org/v1/openapi.yaml

How to test
Step 1: The API MUST meet the prerequisites to be tested. These include that
an OAS file (openapi.json) is publicly available, parsable, all $refs are
resolvable and paths are defined.

Step 2: The openapi.yaml document MAY be available. If available it MUST
contain YAML, be readable and parsable.

Step 3: The openapi.yaml document MUST contain the same OpenAPI
Description as the openapi.json document.

Functional

Functional

Step 4: The CORS header Access-Control-Allow-Origin MUST allow all
origins.

Changes in APIs are inevitable. APIs should therefore always be versioned, facilitating the
transition between changes.

/core/deprecation-schedule: Include a deprecation schedule when
deprecating features or versions

Statement
Implement well-documented deprecation schedules that are communicated in a
timely fashion.

Rationale
Managing change is important. In general, good documentation and timely
communication regarding deprecation schedules are the most important for API
users. When deprecating features or versions, a deprecation schedule MUST be
published. This document SHOULD be published on a public web page.
Furthermore, active clients SHOULD be informed by e-mail once the schedule has
been updated or when versions have reached end-of-life.

/core/transition-period: Schedule a fixed transition period for a new major
API version

Statement
Old versions MUST remain available for a limited and fixed deprecation period.

Rationale
When releasing a new major API version, the old version MUST remain available
for a limited and fixed deprecation period. Offering a deprecation period allows
clients to carefully plan and execute the migration from the old to the new API
version, as long as they do this prior to the end of the deprecation period. A
maximum of 2 major API versions MAY be published concurrently.

2.8 Versioning§

Technical

Functional

/core/uri-version: Include the major version number in the URI

Statement
The URI of an API MUST include the major version number.

Rationale
The URI of an API (base path) MUST include the major version number, prefixed
by the letter v. This allows the exploration of multiple versions of an API in the
browser. The minor and patch version numbers are not part of the URI and MAY
not have any impact on existing client implementations.

An example of an openapi.yaml for an API with a base path
https://api.example.org/v1 and current version 1.0.2:

openapi: 3.0.0

info:

 version: '1.0.2'

servers:

 - description: test environment

 url: https://api.test.example.org/v1

 - description: production environment

 url: https://api.example.org/v1

How to test
Parse the url field in the servers mentioned in the OpenAPI Description to
confirm that a version number is present with prefix v and only contains the
major version number. This rule can be automatically checked and an example
test is shown in the linter configuration.

/core/changelog: Publish a changelog for API changes between versions

Statement
Publish a changelog.

Rationale
When releasing new (major, minor or patch) versions, all API changes MUST be
documented properly in a publicly available changelog.

Technical

Technical

/core/semver: Adhere to the Semantic Versioning model when releasing API
changes

Statement
Implement Semantic Versioning.

Rationale
Version numbering MUST follow the Semantic Versioning [SemVer] model to
prevent breaking changes when releasing new API versions. Release versions are
formatted using the major.minor.patch template (examples: 1.0.2, 1.11.0). Pre-
release versions MAY be denoted by appending a hyphen and a series of dot
separated identifiers (examples: 1.0.2-rc.1, 2.0.0-beta.3). When releasing a new
version which contains backwards-incompatible changes, a new major version
MUST be released. Minor and patch releases MUST only contain backwards
compatible changes (e.g. the addition of an endpoint or an optional attribute).

How to test
Parse the info.version field in the OpenAPI Description to confirm it adheres
to the Semantic Versioning format.

/core/version-header: Return the full version number in a response header

Statement
Return the API-Version header.

Rationale
Since the URI only contains the major version, it is useful to provide the full
version number in the response headers for every API call. This information could
then be used for logging, debugging or auditing purposes. In cases where an
intermediate networking component returns an error response (e.g. a reverse proxy
enforcing access policies), the version number MAY be omitted.

The version number MUST be returned in an HTTP response header named API-
Version (case-insensitive) and SHOULD NOT be prefixed.

An example of an API version response header:

API-Version: 1.0.2

Technical

How to test
A response includes a header "API-Version" with a number matching the version
number set in the info.version field of the OpenAPI Description. This rule can
be automatically checked and an example test is shown in the linter configuration.

This section describes security principles, concepts and technologies to apply when working with
APIs. Controls need to be applied for the security objectives of integrity, confidentiality and
availability of the API (which includes the services and data provided thereby). The architecture
section of the API strategy contains architecture patterns for implementing transport security.

The scope of this section is limited to generic security controls that directly influence the visible
parts of an API. Effectively, only security standards directly applicable to interactions are discussed
here.

In order to meet the complete security objectives, every implementer MUST also apply a range of
controls not mentioned in this section.

Note: security controls for signing and encrypting of application level messages are part of separate
extensions: Signing and Encryption.

/core/transport/tls: Secure connections using TLS

Statement
One should secure all APIs assuming they can be accessed from any location on
the internet. Information MUST be exchanged over TLS-based secured
connections. No exceptions, so everywhere and always. This is required by law.

One MUST follow the latest NCSC guidelines [NCSC 2021].

Rationale
Since the connection is always secured, the access method can be straightforward.
This allows the application of basic access tokens instead of encrypted access
tokens.

How to test
The usage of TLS is machine testable. Follow the latest NCSC guidelines on what
is required to test. The serverside is what will be tested, only control over the
server is assumed for testing. A testing client will be employed to test adherence of
the server. Supporting any protocols, algorithms, key sizes, options or ciphers that

2.9 Transport Security§

https://docs.geostandaarden.nl/api/API-Strategie-architectuur/
https://docs.geostandaarden.nl/api/API-Strategie-architectuur/
https://geonovum.github.io/KP-APIs/API-strategie-modules/signing-jades/
https://geonovum.github.io/KP-APIs/API-strategie-modules/encryption/
https://wetten.overheid.nl/BWBR0048156/2023-07-01

Functional

are deemed insufficient or phased out by NCSC will lead to failure on the
automated test. Both positive and negative scenarios are part of the test: testing
that a subset of *Good* and *Sufficient* configurations are supported and
configurations deemed *Insufficient* or marked for *Phase out*. A manual
exception to the automated test results can be made when configurations
designated for *Phase out* are supported; The API provider will have to provide
clear documentation regarding the phase out schedule.

/core/transport/no-sensitive-uris: No sensitive information in URIs

Statement
Do not put any sensitive information in URIs

Rationale
Even when using TLS connections, information in URIs is not secured. URIs can
be cached and logged outside of the servers controlled by clients and servers. Any
information contained in them should therefore be considered readable by anyone
with access to the network (in the case of the internet, the whole world) and MUST
NOT contain any sensitive information. This includes client secrets used for
authentication, privacy sensitive information such as BSNs or any other
information which should not be shared.

Be aware that queries (anything after the '?' in a URI) are also part of a URI.

The guidelines and principles defined in this section are client agnostic. When implementing a
client agnostic API, one SHOULD at least facilitate that multi-purpose generic HTTP-clients like
browsers are able to securely interact with the API. When implementing an API for a specific client
it may be possible to limit measures as long as it ensures secure access for this specific client.
Nevertheless it is advised to review the following security measures, which are mostly inspired by
the OWASP REST Security Cheat Sheet.

Even while remaining client agnostic, clients can be classified in four major groups. This is in line
with common practice in The OAuth 2.0 Authorization Framework. The groups are:

1. Web applications.

2. Native applications.

2.9.1 HTTP-level Security§

https://cheatsheetseries.owasp.org/cheatsheets/REST_Security_Cheat_Sheet.html
https://tools.ietf.org/html/rfc6749

Technical

3. Browser-based applications.

4. System-to-system applications.

This section contains elements that apply to the generic classes of clients listed above. Although
not every client implementation has a need for all the specifications referenced below, a client
agnostic API SHOULD provide these to facilitate any client to implement relevant security
controls.

Most specifications referenced in this section are applicable to the first three classes of clients
listed above. Security considerations for native applications are provided in OAuth 2.0 for Native
Apps, much of which can help non-OAuth2 based implementations as well. For browser-based
applications a subsection is included with additional details and information. System-to-system
(sometimes called machine-to-machine) may have a need for the listed specifications as well. Note
that different usage patterns may be applicable in contexts with system-to-system clients, see above
under Client Authentication.

Realizations may rely on internal usage of HTTP-Headers. Information for processing requests and
responses can be passed between components, that can have security implications. For instance,
this is common practice between a reverse proxy or TLS-offloader and an application server.
Additional HTTP headers are used in such example to pass an original IP-address or client
certificate.

Implementations MUST consider filtering both inbound and outbound traffic for HTTP-headers
used internally. The primary focus of inbound filtering is to prevent injection of malicious headers
on requests. For outbound filtering, the main concern is leaking of information.

/core/transport/security-headers: Use mandatory security headers in all API
responses

Statement
Return API security headers in all server responses to instruct the client to act in a
secure manner

Rationale
There are a number of security related headers that can be returned in the HTTP
responses to instruct browsers to act in specific ways. However, some of these
headers are intended to be used with HTML responses, and as such may provide
little or no security benefits on an API that does not return HTML. The following
headers SHOULD be included in all API responses:

Header Rationale

Cache-Control: no-

store

Prevent sensitive information from being
cached.

https://www.rfc-editor.org/rfc/rfc8252
https://www.rfc-editor.org/rfc/rfc8252

Header Rationale

Content-Security-

Policy: frame-

ancestors 'none'

To protect against drag-and-drop style
clickjacking attacks.

Content-Type

To specify the content type of the response.
This SHOULD be application/json for
JSON responses.

Strict-Transport-

Security

To require connections over HTTPS and to
protect against spoofed certificates.

X-Content-Type-

Options: nosniff

To prevent browsers from performing MIME
sniffing, and inappropriately interpreting
responses as HTML.

X-Frame-Options: DENY
To protect against drag-and-drop style
clickjacking attacks.

Access-Control-Allow-

Origin

To relax the 'same origin' policy and allow
cross-origin access. See CORS-policy below

The headers below are only intended to provide additional security when responses
are rendered as HTML. As such, if the API will never return HTML in responses,
then these headers may not be necessary. You SHOULD include the headers as part
of a defense-in-depth approach if there is any uncertainty about the function of the
headers, the types of information that the API returns or information it may return
in the future.

Header Rationale

Content-Security-Policy:

default-src 'none'

The majority of CSP functionality only
affects pages rendered as HTML.

Feature-Policy: 'none'
Feature policies only affect pages
rendered as HTML.

Referrer-Policy: no-

referrer

Non-HTML responses should not trigger
additional requests.

In addition to the above listed HTTP security headers, web- and browser-based
applications SHOULD apply Subresource Integrity. When using third-party hosted
contents, e.g. using a Content Delivery Network, this is even more relevant. While
this is primarily a client implementation concern, it may affect the API when it is
not strictly segregated or for example when shared supporting libraries are offered.

https://www.w3.org/TR/SRI/

Technical

How to test
The presence of the mandatory security headers can be tested in an automated way.
A test client makes a call to the API root. The response is tested for the presence of
mandatory headers.

/core/transport/cors: Use CORS to control access

Statement
Use CORS to restrict access from other domains (if applicable).

Rationale
Modern web browsers use Cross-Origin Resource Sharing (CORS) to minimize
the risk associated with cross-site HTTP-requests. By default browsers only allow
'same origin' access to resources. This means that responses on requests to another
[scheme]://[hostname]:[port] than the Origin request header of the initial
request will not be processed by the browser. To enable cross-site requests APIs
can return a Access-Control-Allow-Origin response header. An allowlist
SHOULD be used to determine the validity of different cross-site requests. To do
this check the Origin header of the incoming request and check if the domain in
this header is on the allowlist. If this is the case, set the incoming Origin header
in the Access-Control-Allow-Origin response header.

Using a wildcard * in the Access-Control-Allow-Origin response header is
NOT RECOMMENDED, because it disables CORS-security measures. Only for an
open API which has to be accessed by numerous other websites this is appropriate.

How to test
Tests of this design rule can only be performed when the intended client is known
to the tester. A test can be performed when this information is provided by the API
provider. Otherwise no conclusive test result can be reached.

A specific subclass of clients are browser-based applications, that require the presence of particular
security controls to facilitate secure implementation. Clients in this class are also known as user-
agent-based or single-page-applications (SPA). All browser-based applications SHOULD follow
the best practices specified in OAuth 2.0 for Browser-Based Apps. These applications can be split
into three architectural patterns:

2.9.2 Browser-based applications§

https://datatracker.ietf.org/doc/html/draft-ietf-oauth-browser-based-apps-22

JavaScript applications with a backend; with this class of applications, the backend is the
confidential client and should intermediate any interaction, with tokens never ending up in the
browser. Effectively, these are not different from regular web-application for this security
facet, even though they leverage JavaScript for implementation.

JavaScript applications that share a domain with the API (resource server); these can leverage
cookies marked as HTTP-Only, Secure and SameSite.

JavaScript applications without a backend; these clients are considered public clients, and are
potentially more vulnerable to several types of attacks, including Cross-Site Scripting (XSS),
Cross Site Request Forgery (CSRF) and OAuth token theft. In order to support these clients,
the Cross-Origin Resource Sharing (CORS) policy mentioned above is critical and MUST be
supported.

A REST request or response body SHOULD match the intended content type in the header.
Otherwise this could cause misinterpretation at the consumer/producer side and lead to code
injection/execution.

Reject requests containing unexpected or missing content type headers with HTTP response
status 406 Not Acceptable or 415 Unsupported Media Type.

Avoid accidentally exposing unintended content types by explicitly defining content types e.g.
Jersey (Java) @consumes("application/json");
@produces("application/json"). This avoids XXE-attack vectors for example.

It is common for REST services to allow multiple response types (e.g. application/xml or
application/json, and the client specifies the preferred order of response types by the Accept
header in the request.

Do NOT simply copy the Accept header to the Content-type header of the response.

Reject the request (ideally with a 406 Not Acceptable response) if the Accept header does
not specifically contain one of the allowable types.

Services (potentially) including script code (e.g. JavaScript) in their responses MUST be especially
careful to defend against header injection attacks.

Ensure the intended Content-Type headers are sent in the response, matching the body
content, e.g. application/json and not application/javascript.

2.9.3 Validate content types§

Functional

Geospatial data refers to information that is associated with a physical location on Earth, often
expressed by its 2D/3D coordinates.

/core/geospatial: Apply the geospatial module for geospatial data

Statement
The API Design Rules Module: Geospatial version 1.0.x MUST be applied when
providing geospatial data or functionality.

Rationale
The API Design Rules Module: Geospatial formalizes as set of rules regarding:

1. How to encode geospatial data in request and response payloads.

2. How resource collections can be filtered by a given bounding box.

3. How to deal with different coordinate systems (CRS).

Resource
A resource is an abstraction of a conceptual entity, identified by a globally unique URI, whose
current state can be transferred to clients through one or more representations.

Singular resource
A singular resource is a resource that corresponds to a single conceptual entity (e.g. a
building, person or event).

Collection resource
A collection resource is a resource that corresponds to a logical grouping of related resources
and contains references (URIs) to the individual singular resources it includes. (e.g. a list of
buildings).

URI
A URI [rfc3986] (Uniform Resource Identifier) is a string that identifies a resource. URIs are
intended to be unique across the web, allowing resources to be unambiguously referenced.

OGC
The Open Geospatial Consortium (OGC) is a consortium of experts committed to improving
access to geospatial, or location information.

2.10 Geospatial§

3. Glossary§

https://gitdocumentatie.logius.nl/publicatie/api/mod-geo/
https://gitdocumentatie.logius.nl/publicatie/api/mod-geo/
https://www.ogc.org/

This section is non-normative.

Details

[ADR-GEO]
API Design Rules Module: Geospatial. L. van den Brink, P. Bresters, P. van Genuchten, G.
Mathijssen, M. Strijker. Geonovum. March 07, 2024. URL:
https://gitdocumentatie.logius.nl/publicatie/api/mod-geo/

[NCSC 2021]
ICT-beveiligingsrichtlijnen voor Transport Layer Security (TLS) v2.1. NCSC. Jan 2021. URL:
https://www.ncsc.nl/documenten/publicaties/2021/januari/19/ict-beveiligingsrichtlijnen-voor-
transport-layer-security-2.1

[OPENAPIS]
OpenAPI Specification. Darrell Miller; Jason Harmon; Jeremy Whitlock; Marsh Gardiner;
Mike Ralphson; Ron Ratovsky; Tony Tam; Uri Sarid. OpenAPI Initiative. URL:
https://www.openapis.org/

[RFC2119]
Key words for use in RFCs to Indicate Requirement Levels. S. Bradner. IETF. March 1997.
Best Current Practice. URL: https://www.rfc-editor.org/rfc/rfc2119

[rfc3986]
Uniform Resource Identifier (URI): Generic Syntax. T. Berners-Lee; R. Fielding; L. Masinter.
IETF. January 2005. Internet Standard. URL: https://www.rfc-editor.org/rfc/rfc3986

[RFC8174]
Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words. B. Leiba. IETF. May 2017.
Best Current Practice. URL: https://www.rfc-editor.org/rfc/rfc8174

[rfc8252]
OAuth 2.0 for Native Apps. W. Denniss; J. Bradley. IETF. October 2017. Best Current
Practice. URL: https://www.rfc-editor.org/rfc/rfc8252

A. Spectral linter configuration§

B. References§

B.1 Normative references§

https://gitdocumentatie.logius.nl/publicatie/api/mod-geo/
https://gitdocumentatie.logius.nl/publicatie/api/mod-geo/
https://www.ncsc.nl/documenten/publicaties/2021/januari/19/ict-beveiligingsrichtlijnen-voor-transport-layer-security-2.1
https://www.ncsc.nl/documenten/publicaties/2021/januari/19/ict-beveiligingsrichtlijnen-voor-transport-layer-security-2.1
https://www.ncsc.nl/documenten/publicaties/2021/januari/19/ict-beveiligingsrichtlijnen-voor-transport-layer-security-2.1
https://www.openapis.org/
https://www.openapis.org/
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc3986
https://www.rfc-editor.org/rfc/rfc3986
https://www.rfc-editor.org/rfc/rfc8174
https://www.rfc-editor.org/rfc/rfc8174
https://www.rfc-editor.org/rfc/rfc8252
https://www.rfc-editor.org/rfc/rfc8252

[rfc9110]
HTTP Semantics. R. Fielding, Ed.; M. Nottingham, Ed.; J. Reschke, Ed. IETF. June 2022.
Internet Standard. URL: https://httpwg.org/specs/rfc9110.html

[SemVer]
Semantic Versioning 2.0.0. T. Preston-Werner. June 2013. URL: https://semver.org

[SRI]
Subresource Integrity. Devdatta Akhawe; Frederik Braun; Francois Marier; Joel Weinberger.
W3C. 23 June 2016. W3C Recommendation. URL: https://www.w3.org/TR/SRI/

[OAuth2]
The OAuth 2.0 Authorization Framework. D. Hardt. The Internet Engineering Task Force.
October 2012. URL: https://tools.ietf.org/html/rfc6749

↑

B.2 Informative references§

https://httpwg.org/specs/rfc9110.html
https://httpwg.org/specs/rfc9110.html
https://semver.org/
https://semver.org/
https://www.w3.org/TR/SRI/
https://www.w3.org/TR/SRI/
https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6749

